Calcium phosphate salts, or more specifically hydroxyapatite, are products of great interest in the fields of medical and dental science due to their biocompatibility and osteoconduction property. Deproteinized xenografts are primarily constituted of natural apatites, sintered or not. Variations in the industrial process may affect physicochemical properties and, therefore, the biological outcome. The purpose of this work was to characterize the physical and chemical properties of deproteinized xenogenic biomaterials, Bio-Oss (Geistlich Biomaterials, Wolhuser, Switzerland) and Gen-Ox (Baumer S.A., Brazil), widely used as bone grafts. Scanning electron microscopy, infrared region spectroscopy, X-ray diffraction, thermogravimetry and degradation analysis were conducted. The results show that both materials presented porous granules, composed of crystalline hydroxyapatite without apparent presence of other phases. Bio-Oss presented greater dissolution in Tris-HCl than Gen-Ox in the degradation test, possibly due to the low crystallinity and the presence of organic residues. In conclusion, both commercial materials are hydroxyapatite compounds, Bio-Oss being less crystalline than Gen-Ox and, therefore, more prone to degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s1806-83242008000100002DOI Listing

Publication Analysis

Top Keywords

physicochemical characterization
4
characterization deproteinized
4
deproteinized bovine
4
bovine xenografts
4
xenografts calcium
4
calcium phosphate
4
phosphate salts
4
salts hydroxyapatite
4
hydroxyapatite products
4
products great
4

Similar Publications

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Effect of nutrient-rich quinoa fraction composite wheat flour on product development.

J Food Sci Technol

January 2025

Department of Flour Milling Baking and Confectionery Technology, Central Food Technological Research Institute, (Council of Scientific and Industrial Research), Mysore, 570020 India.

To study the characteristics of bread by incorporating nutrient-rich quinoa flour as a new source for product development. Wheat flour was replaced by fractionated quinoa flour in different variations from 0%QF to 20%QF: 0%, 5%, 10%, 15%, and 20% WQF blends, respectively. Physicochemical studies resulted in higher protein and fiber content for the higher blend.

View Article and Find Full Text PDF

Purpose: Gastrostomy is the commonly used enteral feeding technology. The clinical risks caused by tube dislodgement and peristomal site infection are the common complications before complete tract maturation after gastrostomy. However, there is currently no relevant research to promote gastrostomy wound treatment and tract maturation.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Population growth has led to excessive land use, affecting soil suitability and sustainability. Detailed soil characterization and land evaluation for various land uses are essential steps toward achieving food security and sustaining the environment. This study classifies soils and assesses their suitability for tomato cultivation using the FAO Land Assessment Framework and Analytical Hierarchy Process (AHP) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!