Bioenergy from plants, particularly from perennial grasses and trees, could make a substantial contribution to alleviation of global problems in climate change and energy security if high yields can be sustained. Here, yield traits in a range of key bioenergy crops are reviewed, from which several targets for future improvement can be identified. Some are already the focus of genetically modified (GM) and non-GM approaches. However, the efficient growth strategies of perennial bioenergy crops rely on newly assimilated and recycled carbon and remobilized nitrogen in a continually shifting balance between sources and sinks. This balance is affected by biotic (e.g. pest, disease) and abiotic (e.g. drought) stresses. Future research should focus on three main challenges: changing (photo)thermal time sensitivity to lengthen the growing season without risking frost damage or limiting remobilization of nutritional elements following senescence; increasing aboveground biomass without depleting belowground reserves required for next year's growth and thus without increasing the requirement for nutrient applications; and increasing aboveground biomass without increasing water use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2008.02432.x | DOI Listing |
Commun Biol
January 2025
College of Life Sciences, Capital Normal University, Haidian District, Beijing, China.
Phragmites australis is a globally distributed grass species (Poaceae) recognized for its vast biomass and exceptional environmental adaptability, making it an ideal model for studying wetland ecosystems and plant stress resilience. However, genomic resources for this species have been limited. In this study, we assembled a chromosome-level reference genome of P.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
The economic feasibility of low-carbon ammonia production pathways, such as steam methane reforming with carbon capture and storage, biomass gasification, and electrolysis, is assessed under various policy frameworks, including subsidies, carbon pricing, and renewable hydrogen regulations. Here, we show that employing a stochastic techno-economic analysis at the plant level and a net present value approach under the US Inflation Reduction Act reveals that carbon capture and biomass pathways demonstrate strong economic potential due to cost-effectiveness and minimal public support needs. Conversely, the electrolytic pathway faces significant economic challenges due to higher costs and lower efficiency.
View Article and Find Full Text PDFPlant Physiol
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China.
Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.
View Article and Find Full Text PDFFood Chem
January 2025
Group of Alternative Analytical Approaches (GAAA), Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060 São Paulo State, Brazil; National Institute of Alternative Technologies for Detection Toxicological Assessment and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, 14800-060 São Paulo State, Brazil. Electronic address:
Non-conventional food plants (or non-conventional edible plants) have the potential to serve as an excellent nutritional alternative while promoting the circular economy. Given the nutritional potential of non-conventional food plants, this study aimed to investigate and determine the composition of these plants using inductively coupled plasma optical emission spectroscopy (ICP OES) combined with chemometric techniques. In this context, the following non-conventional food plant species were evaluated: serralha (Sonchus oleraceus), two species of ora-pro-nóbis, Pereskia grandifolia and Pereskia aculeata, peixinho (Nematanthus gregarius), alfavaca (Ocimum basilicum), taioba (Xanthosoma sagittifolium), capeba (Pothomorphe umbellata), tranchagem (Plantago major), and bardana (Arctium lappa).
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!