There are controversial reports in the literature concerning the reactivity of singlet oxygen ((1)O(2)) with the redox probe 2',7'-dichlorodihydrofluorescein (DCFH). By carefully preparing solutions in which (1)O(2) is quantitatively generated in the presence of DCFH, we were able to show that the formation rate of the fluorescent molecule derived from DCFH oxidation, which is 2',7'-dichlorofluorescein (DCF), increases in D(2)O and decreases in sodium azide, proving the direct role of (1)O(2) in this process. We have also prepared solutions in which either (1)O(2) or dication (MB(2+)) and semi-reduced (MB) radicals of the sensitizer and subsequently super-oxide radical (O(2)(-)) are generated. The absence of any effect of SOD and catalase ruled out the DCFH oxidation by O(2)(-), indicating that both (1)O(2) and MB(2+) react with DCFH. Although the formation of DCF was 1 order of magnitude larger in the presence of MB(2+) than in the presence of (1)O(2), considering the rate of spontaneous decays of these species in aqueous solution, we were able to conclude that the reactivity of (1)O(2) with DCFH is actually larger than that of MB(2+). We conclude that DCFH can continue to be used as a probe to monitor general redox misbalance induced in biologic systems by oxidizing radicals and (1)O(2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.2008.00345.x | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China. Electronic address:
Nanohybrids combining phenylboronic acid-modified carbon dots (PCDs) and proteinase K have been engineered for addressing the formidable challenges of antimicrobial photodynamic therapy (aPDT) against bacterial biofilm infections, overcoming biofilm barrier obstruction, the limited diffusion of reactive oxygen species (ROS), and the inadequate ROS generation of traditional photosensitizers. PCDs are formulated for superior water solubility and robust singlet oxygen (O) production, mitigating issues related to dispersion and aggregation-induced quenching typical of conventional photosensitizers. The conjugation of phenylboronic acid to CDs not only enhanced O generation through increased electron-hole separation but also imparted strong bacterial binding capabilities to the PCDs, enabling broad-spectrum sterilization by maximizing the ROS-mediated bacterial destruction.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!