The use of a mesofluidic flow reactor is described for performing Curtius rearrangement reactions of carboxylic acids in the presence of diphenylphosphoryl azide and trapping of the intermediate isocyanates with various nucleophiles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b801631nDOI Listing

Publication Analysis

Top Keywords

flow reactor
8
performing curtius
8
modular flow
4
reactor performing
4
curtius rearrangements
4
rearrangements continuous
4
continuous flow
4
flow process
4
process mesofluidic
4
mesofluidic flow
4

Similar Publications

Mechanistic insight into the decomposition of sulfone compounds in supercritical water.

J Environ Manage

January 2025

State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, NO.28 Xianning West Road, Xi'an, 710049, Shaanxi Province, China.

Supercritical water gasification (SCWG) is famous for the clean utilization of organic wastes without SO emission. Investigating the decomposition mechanism of sulfone compounds, the dominant organic sulfur compounds of organic wastes, in supercritical water (SCW) is conducive to the development of SCWG technology. Herein, the comparative decomposition mechanism of phenyl vinyl sulfone (PVS), diphenyl sulfone (DS), and benzo[b]thiophene 1,1-dioxide (BD) are explored via experiments and density functional theoretical (DFT) calculations.

View Article and Find Full Text PDF

The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).

View Article and Find Full Text PDF

This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.

View Article and Find Full Text PDF

Investigating the application of novel filling materials in Vertical Subsurface Flow Constructed Wetlands for the treatment of anaerobic effluents originating from domestic wastewater.

J Environ Manage

January 2025

Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.

Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%.

View Article and Find Full Text PDF

Up-flow anaerobic sludge blanket bioreactor for the production of carboxylates: effect of inocula on process performance and microbial communities.

Bioresour Bioprocess

January 2025

Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.

This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!