Objective: Human adenovirus type 36 (Ad-36) increases adiposity but improves insulin sensitivity in experimentally infected animals. We determined the ability of Ad-36 to increase glucose uptake by human primary skeletal muscle (HSKM) cells.
Research Design And Methods: The effect of Ad-36 on glucose uptake and cell signaling was determined in HSKM cells obtained from type 2 diabetic and healthy lean subjects. Ad-2, another human adenovirus, was used as a negative control. Gene expression and proteins of GLUT1 and GLUT4 were measured by real-time PCR and Western blotting. Role of insulin and Ras signaling pathways was determined in Ad-36-infected HSKM cells.
Results: Ad-36 and Ad-2 infections were confirmed by the presence of respective viral mRNA and protein expressions. In a dose-dependent manner, Ad-36 significantly increased glucose uptake in diabetic and nondiabetic HSKM cells. Ad-36 increased gene expression and protein abundance of GLUT1 and GLUT4, GLUT4 translocation to plasma membrane, and phosphatidylinositol 3-kinase (PI 3-kinase) activity in an insulin-independent manner. In fact, Ad-36 decreased insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and IRS-1-and IRS-2-associated PI 3-kinase activities. On the other hand, Ad-36 increased Ras gene expression and protein abundance, and Ras siRNA abrogated Ad-36-induced PI 3-kinase activation, GLUT4 protein abundance, and glucose uptake. These effects were not observed with Ad-2 infection.
Conclusions: Ad-36 infection increases glucose uptake in HSKM cells via Ras-activated PI 3-kinase pathway in an insulin-independent manner. These findings may provide impetus to exploit the role of Ad-36 proteins as novel therapeutic targets for improving glucose handling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453622 | PMC |
http://dx.doi.org/10.2337/db07-1313 | DOI Listing |
Cell Rep Med
January 2025
Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA. Electronic address:
Metabolic reprogramming of tumor cells is an emerging hallmark of cancer. Among all the changes in cancer metabolism, increased glucose uptake and the accumulation of lactate under normoxic conditions (the "Warburg effect") is a common feature of cancer cells. In this study, we develop a lactate-responsive drug delivery platform by targeting the Warburg effect.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland.
Background: We still know little about the effective pharmacological treatment of heart failure (HF) associated with the Fontan circulation. One of the new options may be sodium glucose cotransporter-2 inhibitors (SGLT2i), which have been proven effective in classic forms of left ventricular HF.
Objectives: To evaluate the effect and safety of SGLT2i inclusion in adults with Fontan circulation.
Mol Imaging Biol
January 2025
Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Purpose: Radionuclide-labeled fibroblast activation protein inhibitor (FAPI) is an emerging tumor tracer. We sought to assess the uptake and diagnostic performance of F-FAPI-42 PET/CT compared with simultaneous 2-deoxy-2[F]fluoro-D-glucose (F-FDG) PET/CT in primary and metastatic lesions in patients with malignant digestive system neoplasms and to determine the potential clinical benefit.
Procedures: Forty-two patients (men = 30, women = 12, mean age = 56.
Zhongguo Zhong Yao Za Zhi
December 2024
Department of Thoracic Surgery, Shaanxi Provincial Cancer Hospital Xi'an 710061, China.
The study investigated the effect of casticin on the proliferation of non-small cell lung cancer(NSCLC) H322 cells and explored its molecular mechanism. Firstly, the cell counting kit-8(CCK-8) assay, colony formation assay, and EdU assay were used to detect the effect of casticin on the proliferation capacity of H322 cells under different concentrations and treatment durations. Then, glucose uptake, lactate production, extracellular pH, and oxygen consumption of H322 cells were measured before and after casticin treatment to analyze its impact on glycolysis in NSCLC H322 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!