The development of a novel nested polymerase chain reaction is described and used for detecting the presence of Neospora caninum and Hammondia heydorni DNA in DNA extracted from feral rodent tissues. A unique strategy was used for design of an assay that could be adapted for detecting DNA from more than one member of Toxoplasmatinae simultaneously with a minimal number of additional steps. The level of sensitivity described for this assay is comparable to real time-PCR and other nested PCR assays. Twenty-eight of 104 feral mice tested positive for N. caninum in at least one tissue (the brain, heart or liver) studied. In this study, eight instances are reported where the brain tested negative to N. caninum while at least one other tissue was positive. This suggests that prior studies, which screened only the brain, describe prevalence levels that are under-represented. None of 54 mouse brains tested positive for H. heydorni DNA. This suggests that mice are rarely infected by H. heydorni although this hypothesis needs to be explored further. Data obtained in the current study suggest that N. caninum is a common parasite of feral rodents which may be important in the epidemiology of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcp.2008.03.001 | DOI Listing |
Environ Toxicol Chem
January 2025
Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States.
The glucocorticoid receptor (GR) is present in almost every vertebrate cell and is utilized in many biological processes. Despite an abundance of mammalian data, the structural conservation of the receptor and cross-species susceptibility, particularly for aquatic species, has not been well defined. Efforts to reduce, refine, and/or replace animal testing have increased, driving the impetus to advance development of new approach methodologies (NAMs).
View Article and Find Full Text PDFPLoS One
January 2025
Arizona Humane Society, Phoenix, Arizona, United States of America.
SARS-CoV-2 is the cause of mild to severe acute respiratory disease that led to significant loss of human lives worldwide between 2019 and 2022. The virus has been detected in various animals including cats and dogs making it a major public health concern and a One Health issue. In this study, conjunctival and pharyngeal swabs (n = 350) and serum samples (n = 350) were collected between July and December 2020 from cats that were housed in an animal shelter and tested for the infection of SARS-CoV-2 using real time reverse-transcription polymerase chain reaction (rRT-PCR) that targeted the N1 and N2 genes, and a SARS-CoV-2 surrogate virus neutralization Test (sVNT), respectively.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.
View Article and Find Full Text PDFCRISPR J
January 2025
Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system has revolutionized targeted mutagenesis, but screening for mutations in large sample pools can be time-consuming and costly. We present an efficient and cost-effective polymerase chain reaction (PCR)-based strategy for identifying edited mutants in the T generation. Unlike previous methods, our approach addresses the challenges of large progeny populations by using T generation sequencing results for genotype prediction.
View Article and Find Full Text PDFCRISPR J
January 2025
Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!