Enzymatically crosslinked collagen-mimetic dendrimers that promote integrin-targeted cell adhesion.

Biomaterials

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore.

Published: July 2008

Collagen is made up of a diverse family of the extracellular matrices, most of which are generally found crosslinked in vivo. To more closely mimic the biological function of collagen, this work focuses on establishing a molecular strategy to engineer a functional biomimetic collagen that exhibits stable collagen-like triple-helical conformation with cell-binding activity, in addition to an enzyme-mediated crosslinking by tissue transglutaminase (tTGase). A novel sequence spanning residues 2800-2807 of human fibrillin-1 (EDGFFKI) was first identified as an amine donor substrate for tTGase, using a previously characterized APQQEA derived from human osteonectin as an amine acceptor probe. Subsequently, collagen-mimetic peptides (CMPs) supplemented with a cell-binding sequence (GFOGER) and the identified EDGFFKI and APQQEA substrate sequences were conjugated onto a generation 2 poly(amidoamine) dendrimer, resulting in a crosslinkable collagen-mimetic dendrimer, denoted as CMD-K and CMD-Q, respectively. Both CMD-K and CMD-Q exhibited enhanced triple-helical stability and supported cell adhesion in an integrin-specific manner. Finally, tTGase-mediated crosslinking between CMD-K and CMD-Q resulted in a supramolecular structure that exhibited stable collagen-like triple-helical conformation and improved cellular recognition. The results show that the triple-helical structure is important in preserving the GFOGER cell-binding site while the tTGase-mediated protein crosslinking may also be crucial for the recognition by cell surface integrin receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.03.023DOI Listing

Publication Analysis

Top Keywords

cmd-k cmd-q
12
cell adhesion
8
stable collagen-like
8
collagen-like triple-helical
8
triple-helical conformation
8
enzymatically crosslinked
4
crosslinked collagen-mimetic
4
collagen-mimetic dendrimers
4
dendrimers promote
4
promote integrin-targeted
4

Similar Publications

Collagen is made up of a diverse family of the extracellular matrices, most of which are generally found crosslinked in vivo. To more closely mimic the biological function of collagen, this work focuses on establishing a molecular strategy to engineer a functional biomimetic collagen that exhibits stable collagen-like triple-helical conformation with cell-binding activity, in addition to an enzyme-mediated crosslinking by tissue transglutaminase (tTGase). A novel sequence spanning residues 2800-2807 of human fibrillin-1 (EDGFFKI) was first identified as an amine donor substrate for tTGase, using a previously characterized APQQEA derived from human osteonectin as an amine acceptor probe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!