Objective: This study tested the hypothesis that the stress distribution and bond strength of glass posts to intraradicular dentin is influenced by the mechanical testing methodology.

Methods: Thirty single rooted endodontically treated teeth were prepared for luting of tapered fiber-glass posts (Reforpost, Angelus, Londrina, PR, Brazil) with a conventional adhesive system and resin luting cement (Adper Scotchbond Multi-purpose, Rely X ARC, 3M ESPE, St. Paul, MN, USA). The teeth were randomly divided (n=10 per group) into micro-push-out (Mpo), hourglass- (Mh) and rectangular stick-shaped (Ms) microtensile testing groups before sectioning each root into five 1-mm-thick specimens. During specimen preparation for microTBS testing 46/50 stick and 4/50 hourglass specimens prematurely failed; therefore, the Ms group could not be included in the mechanical testing. The remaining specimens were tested at 0.5 mm/min until bond failure. Stress distribution within each specimen type for the three mechanical test methods was analyzed by finite element analysis (FEA). Qualitative analyses were carried out through Von Mises, XY and Sy criterion.

Results: Mpo and Mh had a mean microTBS of 11.89+/-6.55 and 14.98+/-12.72 MPa, respectively, which was not significantly different (p=0.1311). The push-out test demonstrated a more homogenous stress distribution by FEA and less variability in mechanical testing.

Significance: Therefore, the recommended testing method for determining the bond strength of glass posts to intraradicular dentin is by Mpo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2008.03.004DOI Listing

Publication Analysis

Top Keywords

bond strength
12
strength glass
12
intraradicular dentin
12
stress distribution
12
finite element
8
element analysis
8
glass posts
8
posts intraradicular
8
mechanical testing
8
testing
5

Similar Publications

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

Mechanical Properties and Decomposition Behavior of Compression Moldable Poly(Malic Acid)/-Tricalcium Phosphate Hybrid Materials.

Polymers (Basel)

January 2025

Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.

Calcified tissues in living organisms, such as bone, dentin, and enamel, often require surgical intervention for treatment. However, advances in regenerative medicine have increased the demand for materials to assist in regenerating these tissues. Among the various forms of calcium phosphate (CaP), tricalcium phosphate (TCP)-particularly its α-TCP form-stands out due to its high solubility and efficient calcium release, making it a promising candidate for bone regeneration applications.

View Article and Find Full Text PDF

Recent Advances in Paper Conservation Using Nanocellulose and Its Composites.

Molecules

January 2025

Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China.

Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups.

View Article and Find Full Text PDF

A Study on the Impact of Temperature on the Anchoring Durability of Carbon-Fiber-Reinforced Polymer Cables.

Materials (Basel)

January 2025

School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.

To improve the application of carbon-fiber-reinforced polymers (CFRPs) in civil engineering, the long-term durability of CFRP anchorage systems has become a critical issue. Temperature fluctuations can significantly impact the bond performance between CFRPs and the load transfer medium (LTM), making it essential to understand the effects of temperature on the durability of CFRP anchorages. Therefore, this study investigates the influence of temperature on the durability of CFRP anchorages through aging tests on 30 epoxy-filled CFRP-bonded anchorage specimens, followed by pull-out tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!