Regenerating exhaust after-treatment systems are increasingly employed in passenger cars in order to comply with regulatory emission standards. These systems include pollutant storage units that occasionally have to be regenerated. The regeneration strategy applied, the resultant emission levels and their share of the emission level during normal operation mode are key issues in determining realistic overall emission factors for these cars. In order to investigate these topics, test series with four cars featuring different types of such after-treatment systems were carried out. The emission performance in legislative and real-world cycles was monitored as well as at constant speeds. The extra emissions determined during regeneration stages are presented together with the methodology applied to calculate their impact on overall emissions. It can be concluded that exhaust after-treatment systems with storage units cause substantial overall extra emissions during regeneration mode and can appreciably affect the emission factors of cars equipped with such systems, depending on the frequency of regenerations. Considering that the fleet appearance of vehicles equipped with such after-treatment systems will increase due to the evolution of statutory pollutant emission levels, extra emissions originating from regenerations of pollutant storage units consequently need to be taken into account for fleet emission inventories. Accurately quantifying these extra emissions is achieved by either conducting sufficient repetitions of emission measurements with an individual car or by considerably increasing the size of the sample of cars with comparable after-treatment systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2008.02.022 | DOI Listing |
J Trop Med
December 2024
Department of Infectious Disease, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran.
After the global impact of the COVID-19 pandemic, concerns over virus transmission have risen. A state of health emergency was declared in 2022 due to Clade 2 of the monkeypox (MPOX) virus. In August 2024, another emergency was declared by the World Health Organization (WHO) because of the widespread Clade 1b, which caused a more severe and lethal disease.
View Article and Find Full Text PDFCureus
December 2024
Radiation Oncology, Washington University School of Medicine, Saint Louis, USA.
CT-guided adaptive radiotherapy (ART) for the treatment of pancreatic adenocarcinoma is rapidly increasing and has been shown to provide advanced treatment tools comparable to magnetic resonance imaging (MRI)-guided adaptive therapy. Here, we provide the first case report of a local pancreatic recurrence treatment after definitive resection using cone beam computed tomography (CBCT)-guided ART (CT-guided ART) enabled by HyperSight imaging (Varian Medical Systems, Inc., Palo Alto, CA, USA) for daily delineation of organs-at-risk (OARs) and target to improve the quality of online ART.
View Article and Find Full Text PDFPostmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) limits drug delivery to the brain and the movement of neurological biomarkers between the brain and blood. Focused ultrasound-mediated blood-brain barrier opening (FUS-BBBO) noninvasively opens the BBB, allowing increased molecular transport to and from the brain parenchyma. Despite being initially developed as a drug delivery method, FUS-BBBO has shown promise both as a neuroimmunotherapeutic modality, and as a way of improving neurological disease diagnosis via amplification of disease biomarker circulation.
View Article and Find Full Text PDFFront Oncol
December 2024
NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro), Naples, Italy.
Introduction: Precision medicine refers to managing brain tumors according to each patient's unique characteristics when it was realized that patients with the same type of tumor differ greatly in terms of survival, responsiveness to treatment, and toxicity of medication. Precision diagnostics can now be advanced through the establishment of imaging biomarkers, which necessitates quantitative image acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images) manual annotation methodology is an ideal and suitable way to determine the accurate association between genotype and imaging phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!