Fabrication and characteristics of organic semiconductor nanoparticles of copper phthalocyanine oligomers.

J Colloid Interface Sci

Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Key Laboratory of the Ministry of Education on Nanomaterials, Beijing University of Chemical Technology, Beijing, People's Republic of China.

Published: June 2008

Nanoparticles of copper phthalocyanine oligomers (O-CuPc) with peripheral carboxylic acid groups have successfully been prepared by a simple method of liquid phase direct precipitation in the presence of different surfactants. X-ray diffraction patterns, transmission electron microscopy, and UV-visible spectra are employed to characterize the novel organic nanoparticles. The sizes and size distribution of the resulting O-CuPc nanoparticles show a noticeable dependence on surfactants. Nonionic surfactant is helpful in forming uniform nanoparticles. Also we observe a remarkable nanosize effect of the O-CuPc particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.03.012DOI Listing

Publication Analysis

Top Keywords

nanoparticles copper
8
copper phthalocyanine
8
phthalocyanine oligomers
8
nanoparticles
5
fabrication characteristics
4
characteristics organic
4
organic semiconductor
4
semiconductor nanoparticles
4
oligomers nanoparticles
4
oligomers o-cupc
4

Similar Publications

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

Carbon dots doped with metals and non-metals have gained much popularity due to the enhancement in their optical and electronic properties. In this study, polyethyleneimine-functionalized transition metal (nickel or copper) doped carbon dots (CD, NiCD and CuCD) were synthesized through hydrothermal method. The carbon dots exhibited a blue fluorescence at 470 nm when excited at 350 nm.

View Article and Find Full Text PDF

How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!