Disturbances of visual perception frequently accompany neurodegenerative disorders but have been little studied in Huntington's disease (HD) gene carriers. We used psychophysical tests to assess visual perception among individuals in the prediagnostic and early stages of HD. The sample comprised four groups, which included 201 nongene carriers (NG), 32 prediagnostic gene carriers with minimal neurological abnormalities (PD1); 20 prediagnostic gene carriers with moderate neurological abnormalities (PD2), and 36 gene carriers with diagnosed HD. Contrast sensitivity for stationary and moving sinusoidal gratings, and tests of form and motion discrimination, were used to probe different visual pathways. Patients with HD showed impaired contrast sensitivity for moving gratings. For one of the three contrast sensitivity tests, the prediagnostic gene carriers with greater neurological abnormality (PD2) also had impaired performance as compared with NG. These findings suggest that early stage HD disrupts visual functions associated with the magnocellular pathway. However, these changes are only observed in individuals diagnosed with HD or who are in the more symptomatic stages of prediagnostic HD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643869 | PMC |
http://dx.doi.org/10.1017/S1355617708080405 | DOI Listing |
Eur J Neurol
January 2025
Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.
Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.
Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.
Lipids Health Dis
December 2024
Department of Nephrology, The Fourth Affiliated Hospital, Guangxi Medical University, Liuzhou, Guangxi, 545005, People's Republic of China.
Background: Lipid metabolism is influenced by mutations in the EH domain binding protein 1 gene (EHBP1). This study investigated the link between the EHBP1 single-nucleotide polymorphisms (SNPs) and dyslipidemia risks in maintenance dialysis patients with end-stage renal disease in Chinese Han population.
Methods: A total of 539 patients were divided into dyslipidemia (379) and control (160) groups.
Sci Rep
December 2024
Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
The CEL-HYB1 hybrid allele of the carboxyl ester lipase (CEL) gene and its pseudogene (CELP) has been associated with chronic pancreatitis (CP). Recent work indicated that amino acid positions 488 and 548 in CEL-HYB1 determined pathogenicity. Haplotype Thr488-Ile548 was associated with CP while haplotypes Thr488-Thr548 and Ile488-Thr548 were benign.
View Article and Find Full Text PDFVirology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States. Electronic address:
CCR5, a co-receptor critical for R5-tropic HIV entry into host cells, remains a key target for therapeutic interventions. HIV utilizes CCR5, expressed on T cells and macrophages, to facilitate viral entry. Genetic variants, such as the CCR5Δ32 homozygous mutation that confers protection to HIV infection, have made CCR5 a main target for gene-editing technologies, small-molecule inhibitors, and monoclonal antibody-based therapies.
View Article and Find Full Text PDFEnviron Int
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China. Electronic address:
Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!