Within the bone lie several different cell types, including osteoblasts (OBs) and mesenchymal stem cells (MSCs). The MSCs are ideal targets for regenerative medicine of bone due to their differentiation potential towards OBs. Human MSCs exhibit two distinct morphologies: rapidly self-renewing cells (RS) and flat cells (FC) with very low proliferation rates. Another cell type found in pathological bone conditions is osteosarcoma. In this study, we compared the topographic and morphometric features of RS and FC cells, human OBs and MG63 osteosarcoma cells by atomic force microscopy (AFM). The results demonstrated clear differences: FC and hOB cells showed similar ruffled topography, whereas RS and MG63 cells exhibited smoother surfaces. Furthermore, we investigated how selected substrates influence cell morphometry. We found that RS and MG63 cells were flatter on fibrous substrates such as polystyrene and collagen I, but much more rounded on glass, the smoothest surface. In contrast, cells with large area, namely FC and hOB cells, did not exhibit pronounced changes in flatness with regards to the different substrates. They were, however, remarkably flatter in comparison to RS and MG63 cells. We could explain the differences in flatness by the extent of adhesion. Indeed, FC and hOB cells showed much higher content of focal adhesions. Finally, we used the AFM to determine the cellular Young's modulus. RS, FC and hOB cells showed comparable stiffness on the three different substrates, while MG63 cells demonstrated the unique feature of increased elasticity on collagen I. In summary, our results show, for the first time, a direct comparison between the morphometric and biophysical features of different human cell types derived from normal and pathological bone. Our study manifests the opinion that along with RNA, proteomic and functional research, morphological and biomechanical characterization of cells also reveals novel cell features and interrelationships.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822541 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2007.00138.x | DOI Listing |
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFBioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!