We previously showed that the human heart expresses all known P2X and P2Y receptors activated by extra-cellular adenine or uracil nucleotides. Despite evidence that, both in humans and rodents, plasma levels of ATP and UTP markedly increase during myocardial infarction, the differential effects mediated by the various adenine- and uracil-preferring myocardial P2 receptors are still largely unknown. Here, we studied the effects of adenine and uracil nucleotides on murine HL-1 cardiomyocytes. RT-PCR analysis showed that HL-1 cardiomyocytes express all known P2X receptors (except for P2X(2)), as well as the P2Y(2,4,6,14) subtypes. Exposure of cardiomyocytes to adenine nucleotides (ATP, ADP or BzATP) induced apoptosis and necrosis, as determined by flow-cytometry. Cell death was exacerbated by tumour necrosis factor (TNF)-alpha, a cytokine implicated in chronic heart failure progression. Conversely, uracil nucleotides (UTP, UDP and UDPglucose) had no effect 'per se', but fully counteracted the deleterious effects induced by adenine nucleotides and TNF-alpha, even if added to cardiomyocytes after beginning exposure to these cell death-inducing agents. Thus, exposure of cardiomyocytes to elevated concentrations of ATP or ADP in the presence of TNF-alpha contributes to cell death, an effect which is counteracted by uracil-preferring P2 receptors. Cardiomyocytes do not need to be 'primed' by uracil nucleotides to become insensitive to adenine nucleotides-induced death, suggesting the existence of a possible 'therapeutic' window for uracil nucleotides-mediated protection. Thus, release of UTP during cardiac ischaemia and in chronic heart failure may protect against myocardial damage, setting the basis for developing novel cardioprotective agents that specifically target uracil-preferring P2Y receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822540 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2007.00133.x | DOI Listing |
Basic Clin Pharmacol Toxicol
January 2025
Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China.
UDP-glucuronosyltransferases (UGTs) are responsible for inactivation of a variety of drugs, endogenous hormones and environmental toxicants. Chemical inhibitors are a common factor decreasing UGT activities and furtherly inducing health problems. Although simultaneously encountering different inhibitors is readily to occur, no information is available for combined inhibition of UGT.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
October 2024
Analytical and Testing Center, Anhui Dabieshan Chinese Medicine Research Institute, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University Lu'an 237012, China.
UDP-rhamnose, which is synthesized under the catalysis by the rhamnose synthase(RHM), is an essential sugar donor for the synthesis of rhamnoside in plants. Based on the reported rhamnose synthase, this study screened one RHM gene(DhuRHM) from the localized gene database of Dendrobium huoshanense by sequence alignment. This gene was cloned, and then bioinformatics analysis and in vitro functional verification were carried out.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2024
Department of Chemistry, Stanford University, Stanford, CA, USA.
Hydrolytic and oxidative damage to pyrimidine nucleobases in DNA represents a significant source of mutations in the human genome. To better understand how these lesions are incorporated and repaired in human cells, it is desirable to have ready access to isotopically enriched nucleosides for use in isotope tracing and mass spectrometry-based quantification experiments. Here we report on improved syntheses of deoxyuridine, deoxycytidine, 5-hydroxydeoxyuridine, and 5-hydroxydeoxycytidine nucleosides labeled with C and N.
View Article and Find Full Text PDFOrg Lett
December 2024
University of Chinese Academy of Sciences, Beijing 100049, China.
Herein, we describe a reliable and efficient approach for the first chemical synthesis of biologically significant and complex 3--(-3-hydroxydecanoyl) modified uridine diphosphate -acetylglucosamine that is the native substrate of LpxC involved in the biosynthesis of the cell wall of . The synthetic protocol provides a successful example for the reliable preparation of modified nucleoside diphosphate sugar, which features judiciously selected protecting groups, the formation of pyrophosphate linkage with 5'-phosphate nucleoside as nucleophile, and the straightforward purification process.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
Rebaudioside M2 (RebM2) is characterized as 13-[(2--β-d-glucopyranosyl-3--β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2--β-d-glucopyranosyl-6--β-d-glucopyranosyl-β-d-glucopyranosyl) ester], an isomer of rebaudioside M with a 1 → 6 sugar linkage. The product was found in the biotransformation of rebaudioside D (RebD) catalyzed by a glycosyltransferase from (UGT). Herein, guided by consensus engineering and molecular dynamics simulations, a variant UGT with enhanced activity and thermostability was obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!