Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Abstract: Many animals and plants show a correlation between the traits of the individuals in the mating pair, implying assortative mating. Given the ubiquity of assortative mating in nature, why and how it has evolved remain open questions. Here we attempt to answer these questions in those cases where the trait under assortment is the same in males and females. We consider the most favorable scenario for assortment to evolve, where the same trait is under assortment and viability selection. We find conditions for assortment to evolve using a multilocus formalism in a haploid population. Our results show how epistasis in fitness between the loci that control the focal trait is crucial for assortment to evolve. We then assume specific forms of assortment in haploids and diploids and study the limiting cases of selective and nonselective mating. We find that selection for increased assortment is weak and that where increased assortment is costly, it does not invade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/587062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!