Yeast biomass production in brewery's spent grains hemicellulosic hydrolyzate.

Appl Biochem Biotechnol

INETI, Departamento de Biotecnologia, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal.

Published: March 2008

Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h(-1), 0.61 g g(-1), and 0.56 g l(-1) h(-1), respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-007-8046-6DOI Listing

Publication Analysis

Top Keywords

yeast biomass
8
brewery's spent
8
spent grains
8
grains hemicellulosic
8
hemicellulosic hydrolyzate
8
yeast extract
8
specific growth
8
yeast
7
biomass production
4
production brewery's
4

Similar Publications

Often, the value of the whole biomass from fermentation processes is not exploited, as commercial interests are focused on the main product that is typically either accumulated within cells or secreted into the medium. One underutilized fraction of yeast cells is the cell wall that contains valuable polysaccharides, such as chitin, known for its biocompatibility and biodegradability, which are thought of as valuable properties in diverse industries. Therefore, the valorization of waste biomass from fermentation to coproduce chitin could significantly improve the overall profitability and sustainability of biomanufacturing processes.

View Article and Find Full Text PDF

The appropriate nutrient conditions for methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro.

Sci Rep

January 2025

Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic.

Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms.

View Article and Find Full Text PDF

Enhanced Cellobiose Production from Cellulose by CaCl-Phosphoric Acid Pretreatment for the Efficient Preparation of Astragalin in Recombinant .

J Agric Food Chem

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

Cellulose, as the most abundant and cheap renewable resource in nature, is of great importance for its utilization. An enzymatic cellulose solution, mainly containing cellobiose and glucose, was utilized to produce astragalin instead of cellobiose in the recombinant strains. However, the crystalline structure of cellulose affects the production of cellobiose, resulting in a low astragalin yield.

View Article and Find Full Text PDF

Discovery of antimicrobial activity in chemical extracts derived from unexplored algal-bacterial culture systems and isolates.

Sci Rep

December 2024

Bioresource and Environmental Security, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA.

Global health is affected by viral, bacterial, and fungal infections that cause chronic and often fatal diseases. Identifying novel antimicrobials through innovative methods that are active against human pathogens will create a new, necessary pipeline for chemical discovery and therapeutic development. Our goal was to determine whether algal production systems represent fertile ground for discovery of antibiotics and antifungals.

View Article and Find Full Text PDF

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!