The acid waters (pH=2.73-3.4) that originate from the Carnoulès mine tailings (France) are known for their very high concentrations of As (up to 10,000 mg l(-1)) and Fe (up to 20,000 mg l(-1)). To analyze the composition of the archaeal community, (their temporal variation inside the tailing and spatial variations all along the Reigous Creek, which drains the site), seven 16S rRNA gene libraries were constructed. Clone analysis revealed that all the sequences were affiliated to the phylum Euryarchaeota, while Crenarchaeota were not represented. The study showed that the structure of the archaeal community of the aquifer of the tailing stock is different to that of the Reigous Creek. Irrespective of the time of sampling, the most abundant sequences found inside the tailing stock were related to Ferroplasma acidiphilum, an acidophilic and ferrous-iron oxidizing Archaea well known for its role in bioleaching. Inversely, in Reigous Creek, a sequence affiliated to the uncultured Thermoplasmatales archaeon, clone YAC1, was largely dominant. This study provides a better understanding of the microbial community associated with an acid mine drainage rich in arsenic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-008-0160-z | DOI Listing |
Microb Ecol
October 2016
Laboratoire HydroSciences Montpellier, UMR 5569, Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet, 34090, Montpellier, France.
Microscopic eukaryotes play a key role in ecosystem functioning, but their diversity remains largely unexplored in most environments. To advance our knowledge of eukaryotic microorganisms and the factors that structure their communities, high-throughput sequencing was used to characterize their diversity and spatial distribution along the pollution gradient of the acid mine drainage at Carnoulès (France). A total of 16,510 reads were retrieved leading to the identification of 323 OTUs after normalization.
View Article and Find Full Text PDFFEMS Microbiol Ecol
October 2014
Laboratoire HydroSciences Montpellier, HSM, UMR 5569 (IRD, CNRS, Universités Montpellier 1 et 2), Université Montpellier 2, Montpellier, France.
Deciphering the biotic and abiotic factors that control microbial community structure over time and along an environmental gradient is a pivotal question in microbial ecology. Carnoulès mine (France), which is characterized by acid waters and very high concentrations of arsenic, iron, and sulfate, provides an excellent opportunity to study these factors along the pollution gradient of Reigous Creek. To this end, biodiversity and spatiotemporal distribution of bacterial communities were characterized using T-RFLP fingerprinting and high-throughput sequencing.
View Article and Find Full Text PDFEnviron Sci Process Impacts
August 2013
HydroSciences UMR 5569 CNRS - Universités Montpellier I and II - IRD, Place Eugène Bataillon, CC MSE, 34095 Montpellier cedex 5, France.
Extremophiles
July 2012
UMR 5569-IRD, CNRS, Universités Montpellier 1 et 2, Université Montpellier 2, Place E. Bataillon, CC MSE, 34095 Montpellier, France.
The Carnoulès mine is an extreme environment located in the South of France. It is an unusual ecosystem due to its acidic pH (2-3), high concentration of heavy metals, iron, and sulfate, but mainly due to its very high concentration of arsenic (up to 10 g L⁻¹ in the tailing stock pore water, and 100-350 mg L⁻¹ in Reigous Creek, which collects the acid mine drainage). Here, we present a survey of the archaeal community in the sediment and its temporal variation using a culture-independent approach by cloning of 16S rRNA encoding genes.
View Article and Find Full Text PDFEnviron Sci Technol
March 2011
HydroSciences UMR 5569 CNRS - Universités Montpellier I and II - IRD, Place Eugène Bataillon, CC MSE, 34095 Montpellier cedex 5, France.
Thallium concentration reached up to 534 μg L(-1) in the Reigous acid mine drainage downstream from the abandoned Pb-Zn Carnoulès mine (Southern France). It decreased to 5.44 μg L(-1) in the Amous River into which the Reigous creek flows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!