NC-1059 is a synthetic channel-forming peptide that provides for ion transport across, and transiently reduces the barrier integrity of, cultured epithelial monolayers derived from canine kidney (MDCK cells). Experiments were conducted to determine whether epithelial cells derived from other sources were similarly affected. Epithelial cells derived from human intestine (T-84), airway (Calu-3), porcine intestine (IPEC-J2) and reproductive duct (PVD9902) were grown on permeable supports. Basal short circuit current (Isc) was <3 microA cm(-2) for T-84, IPEC-J2 and PVD9902 cell monolayers and <8 microA cm(-2) for Calu-3 cells. Apical NC-1059 exposure caused, in all cell types, an increase in Isc to >15 microA cm(-2), indicative of net anion secretion or cation absorption, which was followed by an increase in transepithelial conductance (in mS cm(-2): T-84, 1.6 to 62; PVD9902, 0.2 to 51; IPEC-J2, 0.3 to 26; Calu-3, 2.3 to 13). These results are consistent with the peptide affecting transcellular ion movement, with a likely effect also on the paracellular route. NC-1059 exposure increased dextran permeation when compared to basal permeation, which documents an effect on the paracellular pathway. In order to evaluate membrane ion channels, experiments were conducted to study the dose dependence and stability of the NC-1059-induced membrane conductance in Xenopus laevis oocytes. NC-1059 induced a dose-dependent increase in oocyte membrane conductance that remained stable for greater than 2 h. The results demonstrate that NC-1059 increases transcellular conductance and paracellular permeation in a wide range of epithelia. These effects might be exploited to promote drug delivery across barrier epithelia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00232-008-9099-3 | DOI Listing |
JCI Insight
January 2025
Division of Nephrology, Department of Medicine, Vanderbildt University Medical Center, Nashville, United States of America.
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.
View Article and Find Full Text PDFAnn Med
December 2025
School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States.
Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!