Attempts have been made to use various forms of cellular vectors to deliver therapeutic genes to diseased tissues like malignant tumours. However, this approach has proved problematic due to the poor uptake of these vectors by the target tissue. We have devised a novel way of using magnetic nanoparticles (MNPs) to enhance the uptake of such 'therapeutically armed' cells by tumours. Monocytes naturally migrate from the bloodstream into tumours, so attempts have been made to use them to deliver therapeutic genes to these sites. However, transfected monocytes injected systemically fail to infiltrate tumours in large numbers. Using a new in vitro assay for assessing monocyte extravasation, we show that the ability of transfected human monocytes to migrate across a human endothelial cell layer into a 3D tumour spheroid is markedly increased when cells are pre-loaded with MNPs and a magnetic force is applied close to the spheroid. Furthermore, systemic administration of such 'magnetic' monocytes to mice bearing solid tumours led to a marked increase in their extravasation into the tumour in the presence of an external magnet. This new magnetic targeting approach could be used to increase the targeting, and thus the efficacy, of many cell-based gene therapies in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/gt.2008.57 | DOI Listing |
Eur J Hum Genet
January 2025
Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, P.O Box 45124, Jazan, Saudi Arabia.
Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
Distinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI).
View Article and Find Full Text PDFCurr Biol
December 2024
Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France. Electronic address:
The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!