Topotecan is indicated in the treatment of advanced-stage ovarian cancers refractory to prior platinum-based regimen. The aim of this study was to compare the standard therapeutic strategy with a novel strategy of weekly administration of topotecan. The primary endpoints were dose density and overall tolerance. This retrospective cohort study included patients with ovarian cancer in relapse. During a first period (1998-2001), 24 patients received the standard topotecan dose of 1.5 mg/m(2)/day for 5 consecutive days with a 3-week interval between each treatment course. During a second period (2003-2006), 21 patients received a weekly topotecan dose of 4 mg/m(2) for 3 weeks out of every 4. Grades III and IV haematological toxicities were more frequent with the standard strategy (p < 0.05), even after adjustment of the prescription of erythropoietin and G-CSF. With the weekly strategy, an increase in dose density and a reduction in the number of delayed doses were observed. No significant difference between the 2 strategies was found in terms of response to the treatment and specific survival. This study suggests that the weekly administration of topotecan 4 mg/m(2), for 3 weeks out of every 4, results in a better maintenance of dose density and a reduction in haematological toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000127384 | DOI Listing |
Br J Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Western Road, Xi'an, Shannxi, 710061.
Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).
Life (Basel)
December 2024
Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 4000 Plovdiv, Bulgaria.
Background: Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Division of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
Low-density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease, and it plays a causal role in the development of atherosclerosis. Genome-wide association studies (GWASs) have successfully identified hundreds of genetic variants associated with LDL-C. Most of these risk loci fall in non-coding regions of the genome, and it is unclear how these non-coding variants affect circulating lipid levels.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia.
Background/objective: Metabolic syndrome (MetS) is characterized by abdominal obesity, increased blood pressure (BP), fasting blood glucose (FBG) and triglyceride levels, and reduced high-density lipoprotein (HDL) levels. This study aims to investigate the efficacy of the Wharton's jelly mesenchymal stem cells (WJMSCs)-derived small extracellular vesicles' (sEVs) preparations in managing MetS.
Method: Twenty-four rats were fed with a high-fat and high-fructose diet to induce MetS for 16 weeks and randomized into three groups ( = 8/group): a MetS Control group treated with normal saline, MetS Low Dose (LD) group treated with a LD of sEVs preparations (3 × 10 particle/rat), and MetS High Dose (HD) group treated with a HD of sEVs preparations (9 × 10 particles/rat).
Cancers (Basel)
January 2025
Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!