Introduction: Organic acids were examined from normal and Down syndrome pregnancies to identify possible differences between the amniotic fluid from fetuses with Down Syndrome compared with that of normal fetuses.

Materials And Methods: Amniotic fluids were obtained from prior amniocenteses. Forty-one normal and 22 Down syndrome specimens were assayed using gas chromatography/mass spectrometry.

Results And Discussion: 5-hydroxycaproate, methylsuccinate, alpha-ketoglutarate, and adipate were significantly elevated in Down syndrome, suggesting riboflavin deficiency. Phenylpyruvate was also significantly elevated in fetuses with Down syndrome. Phenylpyruvate inhibits the metabolism of tetrahydrobiopterin, which is necessary for neurotransmitter metabolism. Elevated phenylpyruvate is consistent with previous research, suggesting a disturbance of tetrahydrobiopterin metabolism in Down syndrome.

Conclusion: Organic acid markers for B2 deficiency are elevated in the amniotic fluid of fetuses with Down syndrome. Elevation of phenylpyruvate may impair neurotransmitter metabolism. Organic acid markers for B12 levels are not different between the Down syndrome and normal group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790742PMC
http://dx.doi.org/10.1159/000116749DOI Listing

Publication Analysis

Top Keywords

organic acid
12
amniotic fluid
12
normal syndrome
12
fetuses syndrome
12
syndrome
8
syndrome pregnancies
8
fluid fetuses
8
neurotransmitter metabolism
8
acid markers
8
normal
5

Similar Publications

Background/objectives: Clofazimine (CFZ) is a Biopharmaceutics Classification System (BCS) II drug introduced in the US market in 1986 for the treatment of leprosy. However, CFZ was later withdrawn from the market due to its extremely low aqueous solubility and low absorption. In the literature, the intrinsic solubility of CFZ has been estimated to be <0.

View Article and Find Full Text PDF

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.

View Article and Find Full Text PDF

In Situ Preparation of Silver Nanoparticles/Organophilic-Clay/Polyethylene Glycol Nanocomposites for the Reduction of Organic Pollutants.

Polymers (Basel)

December 2024

Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.

This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.

View Article and Find Full Text PDF

Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays.

Polymers (Basel)

December 2024

Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.

Smart fibers with tunable luminescence properties, as a new form of visual output, present the potential to revolutionize personal living habits in the future and are receiving more and more attention. However, a huge challenge of smart fibers as wearable materials is their stretching capability for seamless integration with the human body. Herein, stretchable thermochromic fluorescent fibers are prepared based on self-crystallinity phase change, using elastic polyurethane (PU) as the fiber matrix, to meet the dynamic requirements of the human body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!