Mammalian cells express several factors that inhibit lentiviral infection and that have been under strong selective pressure. One of these factors, TRIM5, targets the capsid protein of incoming retrovirus particles and inhibits subsequent steps of the replication cycle. By substituting human immunodeficiency virus type 1 capsid, we were able to show that a set of divergent primate lentivirus capsids was generally not susceptible to restriction by TRIM5 proteins from higher primates. TRIM5alpha proteins from other primates exhibited distinct restriction specificities for primate lentivirus capsids. Finally, we identified novel primate lentiviral capsids that are targeted by TRIMCyp proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447065PMC
http://dx.doi.org/10.1128/JVI.00410-08DOI Listing

Publication Analysis

Top Keywords

primate lentivirus
12
trim5 proteins
8
lentivirus capsids
8
primate
4
lentivirus capsid
4
capsid sensitivity
4
sensitivity trim5
4
proteins
4
proteins mammalian
4
mammalian cells
4

Similar Publications

Indonesia has one of the highest HIV infection rates in Southeast Asia. The use of dolutegravir, an integrase strand transfer inhibitor (INSTI), as a first-line treatment underscores the need for detailed data on INSTI drug resistance mutations (DRMs). Currently, there is a lack of comprehensive data on DRMs INSTI and other HIV drug resistance in Indonesian patients, both pre- and post-treatment.

View Article and Find Full Text PDF

Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis.

Math Biosci Eng

December 2024

Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, D-06217 Merseburg, Germany.

In this article, we reconsider the classical target cell limited dynamical within-host HIV model, solely taking into account the interaction between $ {\rm{CD}}4^{+} $ T cells and virus particles. First, we summarize some analytical results regarding the corresponding dynamical system. For that purpose, we proved some analytical results regarding the system of differential equations as our first main contribution.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.

View Article and Find Full Text PDF

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!