A wide variety of computational algorithms have been developed that strive to capture the chemical similarity between two compounds for use in virtual screening and lead discovery. One limitation of such approaches is that, while a returned similarity value reflects the perceived degree of relatedness between any two compounds, there is no direct correlation between this value and the expectation or confidence that any two molecules will in fact be equally active. A lack of a common framework for interpretation of similarity measures also confounds the reliable fusion of information from different algorithms. Here, we present a probabilistic framework for interpreting similarity measures that directly correlates the similarity value to a quantitative expectation that two molecules will in fact be equipotent. The approach is based on extensive benchmarking of 10 different similarity methods (MACCS keys, Daylight fingerprints, maximum common subgraphs, rapid overlay of chemical structures (ROCS) shape similarity, and six connectivity-based fingerprints) against a database of more than 150,000 compounds with activity data against 23 protein targets. Given this unified and probabilistic framework for interpreting chemical similarity, principles derived from decision theory can then be applied to combine the evidence from different similarity measures in such a way that both capitalizes on the strengths of the individual approaches and maintains a quantitative estimate of the likelihood that any two molecules will exhibit similar biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci7004498 | DOI Listing |
Noncoding RNA
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.
View Article and Find Full Text PDFHematol Rep
January 2025
Laboratory of Immunobiology and Immunogenetics, Post Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil.
A quarter of a century ago, sickle cell disease (SCD) was mainly viewed as a typical genetic disease inherited as a classical Mendelian trait. Therefore, the main focus concerning SCD was on diagnosis, meaning, genotyping, and identification of homozygous and heterozygous individuals carrying the relevant HbS mutant allele. Nowadays, it is well established that sickle cell disease is indeed the result of homozygosis for the HbS variant, although this single feature is not capable of explaining the highly diverse clinical presentation of SCD.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans.
View Article and Find Full Text PDFAnalyst
January 2025
Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Sensitive and rapid detection methods for rare earth elements (REEs), including lanthanides (Lns), will facilitate the mining and recovery of these elements. Here, we innovated a rapid, highly selective and sensitive fluorescence detection method for Lns, based on Hans-Lanmodulin, a newly discovered protein with high selectivity and binding affinity for rare earth elements. By labelling the fluorescein moiety FITC onto Hans-Lanmodulin, named as FITC-Hans-LanM.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
Energetic materials often possess different polymorphs that exhibit distinguishable performances. As a typical energetic material, hexanitrohexaazaisowurtzitane (CL-20 or HNIW) is one of the most powerful explosives nowadays. Phase transition of CL-20 induced by ubiquitous water vapor leading to an increase in sensitivity and a decrease in energy level is a key bottleneck that limits the widespread application of CL-20-based explosives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!