The copper(II) bisthiosemicarbazonato complex, copper-diacetyl-bis(N4-methylthiosemicarbazonate) (Cu-ATSM), has been used clinically as a positron emission tomography (PET) tracer for the delineation of hypoxia. Six novel, asymmetric bis(thiosemicarbazones) derived from diacetyl-2-(4-N-methyl-3-thiosemicarbazone)-3-(4-N-amino-3-thiosemicarbazone) (H2ATSM/A), one of which contained a nitroimidazole functionality, were radiolabeled with 64Cu (t1/2=12.7 h, beta+=19.3%). In vitro studies were performed on three of the compounds using EMT6 mammary carcinoma cells under hypoxic and normoxic conditions. All compounds displayed rapid cellular association and appreciable hypoxic selectivity with increased uptake under normoxic and hypoxic conditions when compared to 64Cu-ATSM. Biodistribution and small animal PET imaging studies were then carried out in vivo using two compounds in EMT6 tumor-bearing mice. The compounds showed high tumor uptake, but also substantial accumulation in the liver. These complexes demonstrate that H 2ATSM/A represents a novel and versatile synthetic platform that can be utilized to provide hypoxic cell selectivity through functionalization of the bisthiosemicarbazonate group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404635PMC
http://dx.doi.org/10.1021/jm800031xDOI Listing

Publication Analysis

Top Keywords

positron emission
8
emission tomography
8
compounds emt6
8
vitro vivo
4
vivo evaluation
4
evaluation bifunctional
4
bifunctional bisthiosemicarbazone
4
bisthiosemicarbazone 64cu-complexes
4
64cu-complexes positron
4
tomography imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!