Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro.

World J Gastroenterol

Department of General Surgery, Affiliated First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China.

Published: April 2008

Aim: To investigate the effect and mechanism of blockade of the CXC chemokine receptor-4 (CXCR4) signaling pathway by AMD3100, a small non-peptide CXCR4 inhibitor, on invasion and metastasis of colorectal cancer cells in vitro.

Methods: Human colorectal cancer cell line SW480 was treated with AMD3100 at different final concentrations. 3-(4,5-dimethylthiazole-2-yl)-2.5-dipheny-ltetrazolium bromide (MTT) assay was used to detect the effect of AMD3100 on cell proliferation. The invasion ability of SW480 cells was determined by cell invasion assay kit. In the presence of AMD3100, the CXCL12-mediated migratory response of SW480 cells was tested by classical chemotaxis assays. RT-PCR analysis and Western blotting were used to detect the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in SW480 cells.

Results: Cell viability was significantly suppressed by AMD3100 in a dose-dependent manner. AMD3100 (100 and 1000 ng/mL) significantly inhibited the invasion ability of SW480 cells. Treatment with AMD3100 markedly reduced the expression of VEGF and MMP-9 but not MMP-2 in SW480 cells.

Conclusion: The CXCL12/CXCR4 system is an important mediator of proliferation and invasion of CXCR4-expressing colorectal cancer cells. AMD3100 inhibited invasion and metastasis activity of the colorectal cancer cell line SW480 through down-regulation of VEGF and MMP-9 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705083PMC
http://dx.doi.org/10.3748/wjg.14.2308DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
20
cancer cells
12
sw480 cells
12
amd3100
9
human colorectal
8
invasion metastasis
8
cancer cell
8
cell sw480
8
proliferation invasion
8
invasion ability
8

Similar Publications

Trimethylamine-N-oxide (TMAO) is gut microbiota-derived metabolite, plays a critical role in human health and diseases such as metabolic, cardiovascular, colorectal cancer and, neurological disorders. Binding interactions between TMAO and serum albumins are crucial to understand the impact of TMAO on disease mechanisms. However, detailed insights into the interaction mechanisms, preferred binding locations, and conformational changes in BSA upon binding TMAO are still unclear.

View Article and Find Full Text PDF

Background: Colorectal neuroendocrine tumors with liver metastases (CRNELM) are associated with a poorer prognosis compared to their nonmetastatic counterparts. A comprehensive understanding of the tumor microenvironment (TME) heterogeneity between primary lesions (PL) and liver metastases (LM) could provide crucial insights for enhancing clinical management strategies for these patients.

Methods: We utilized single-cell RNA sequencing to analyze fresh tissue samples from CRNELM patients, aiming to elucidate the variations in TME between PL and LM.

View Article and Find Full Text PDF

Ephrin A1 functions as a ligand of EGFR to promote EMT and metastasis in gastric cancer.

EMBO J

January 2025

Department of Colorectal Surgery and Oncology and Department of Cell Biology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.

Distant metastasis is the major cause of gastric cancer mortality, and epidermal growth factor receptor (EGFR) activation plays critical roles in gastric cancer dissemination. However, EGFR targeting therapies in gastric cancer show only marginal effects, and the molecular mechanisms of oncogenic EGFR signaling remain poorly defined. Here, we report Ephrin A1 as a novel ligand of EGFR in gastric cancer.

View Article and Find Full Text PDF

Lung and colon cancer are among the most commonly diagnosed and fatal cancer types in the world. Due to their metastatic properties, they complicate the treatment process and pose a great threat to human health. These aggressive types of cancer are resistant to chemotherapy drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!