Corncob is an economic feedstock and more than 20 million tons of corncobs are produced annually in China. Abundant xylose can be potentially converted from the large amount of hemicellulosic materials in corncobs, which makes the crop residue an attractive alternative substrate for a value-added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the L-isomer and a simple nutrition requirement by the fungus. Production of L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were defined.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-007-8078-yDOI Listing

Publication Analysis

Top Keywords

l-+-lactic acid
16
lactic acid
12
acid
8
acid production
8
rhizopus oryzae
8
corncob hydrolysate
8
production l-+-lactic
8
strain hzs6
8
production
6
enhanced l-+-lactic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!