Ionophoric properties of atropine: complexation and transport of Na+, K+, Mg2+ and Ca2+ ions across a liquid membrane.

Nat Prod Res

Unit of Bio-industry and Molecular Toxicology, Laboratory of Microbiology, Biotechnology and Environment, Faculty of Sciences Aïn Chock, University Hassan II-Aïn Chock, Morocco.

Published: April 2008

The activity of atropine on the complexation and transport of Na(+), K(+), Mg(2+) and Ca(2+) ions across a liquid membrane was investigated using a spectrophotometric method. Atropine is a natural drug that blocks muscarinic receptors. It is a competitive antagonist of the action of acetylcholine and other muscarinic agonists. Atropine is shown to extract Na(+), K(+), Mg(2+) and Ca(2+) ions from an aqueous phase into an organic one with a preference for Ca(2+) ions. According to a kinetic study, divalent cations (Mg(2+) and Ca(2+)) are more rapidly transported than monovalent ones (Na(+) and K(+)). In both complexation and transport, the flux of the ions increases with the increase of atropine concentration. Atropine might act on the membrane permeability; its complexation and ionophoric properties shed new lights on its therapeutic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786410701592620DOI Listing

Publication Analysis

Top Keywords

mg2+ ca2+
16
ca2+ ions
16
complexation transport
12
na+ mg2+
12
ionophoric properties
8
atropine complexation
8
transport na+
8
ions liquid
8
liquid membrane
8
atropine
6

Similar Publications

To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.

View Article and Find Full Text PDF

Disinfection by-products (DBPs), formed from biofilm extracellular polymeric substances (EPS) and organic matter during regular disinfection practices in drinking water distribution systems, poses a potential threat to drinking water safety. However, the diverse DBP formations induced by the intertwined algal organic matter (AOM) and bacterial EPS remains elusive. In this study, we show substantial variations in EPS and DBP formation patterns driven by AOM biosorption with divalent ions (Ca and Mg).

View Article and Find Full Text PDF

This study aimed to investigate the performance differences of low-sodium myofibrillar protein (MP) gels substituted by different chloride salt mixtures from the perspective of gelation process. The results revealed that low-sodium MP substituted by KCl/CaCl exhibited higher turbidity and particle size at 40 % substitution, and formed protein aggregates earlier at 53 °C. During the gelation process, KCl/CaCl increased the extent of cross-linking as the substitution level increased from 10 % to 40 %, which was prone to forming final gels with poor palatability.

View Article and Find Full Text PDF

Large and complex karst catchments, like the one in Southern Dalmatia (Croatia) and Western Herzegovina (Bosnia and Herzegovina), are fragile environments requiring careful protection and sustainable water resources management. Understanding the processes that influence karst aquifer water chemistry is essential for the effective protection of water quality and quantity, ensuring sustainable resource availability and minimizing vulnerability to contamination. A hydrogeochemical dataset comprising over 30 groundwater (springs) and surface water samples, was collected in this cross-border catchment area from September 2013 to September 2020, accounting for seasonal variations.

View Article and Find Full Text PDF

Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!