Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ingestion and inhalation of corrosion products covering weathered penetrators made of depleted uranium (DU) represent potential radiological exposure pathways. In order to study the bioavailability of these corrosion products, their solubility was determined using simulated gastric and pulmonary juices. About 75 and 36% of the uranium in the corrosion products were found to be soluble in simulated gastric and pulmonary juices, respectively. The effective dose coefficient for adults after ingestion was calculated to be 0.61 muSv mg(-1) DU. This compares to an effective dose coefficient for an adult of 0.71 muSv mg(-1) for DU materials given by the World Health Organization (WHO). The effective dose coefficient for inhalation was calculated to be 3.7 x 10(-6 )Sv Bq(-1) for workers and 5.3 x 10(-6 )Sv Bq(-1) for members of the public, respectively, which is between those of particles of Types M and S as defined by the International Commission on Radiological Protection (ICRP). The speciation of the corrosion products was investigated by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The mean oxidation state of uranium was found to be 4.6, which suggests that the uranium in the corrosion products consists of a mixture of U(IV) and U(VI) species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00411-007-0142-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!