Noninvasive imaging of apoptosis and its application in cancer therapeutics.

Clin Cancer Res

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

Published: April 2008

Purpose: Activation of the apoptotic cascade plays an important role in the response of tumors to therapy. Noninvasive imaging of apoptosis facilitates optimization of therapeutic protocols regarding dosing and schedule and enables identification of efficacious combination therapies.

Experimental Design: We describe a hybrid polypeptide that reports on caspase-3 activity in living cells and animals in a noninvasive manner. This reporter, ANLucBCLuc, constitutes a fusion of small interacting peptides, peptide A and peptide B, with the NLuc and CLuc fragments of luciferase with a caspase-3 cleavage site (DEVD) between pepANLuc (ANLuc) and pepBCLuc (BCLuc). During apoptosis, caspase-3 cleaves the reporter, enabling separation of ANLuc from BCLuc. A high-affinity interaction between peptide A and peptide B restores luciferase activity by NLuc and CLuc complementation. Using a D54 glioma model, we show the utility of the reporter in imaging of apoptosis in living subjects in response to various chemotherapy and radiotherapy regimens.

Results: Treatment of live cells and mice carrying D54 tumor xenografts with chemotherapeutic agents such as temozolomide and perifosine resulted in induction of bioluminescence activity, which correlated with activation of caspase-3. Treatment of mice with combination therapy of temozolomide and radiation resulted in increased bioluminescence activity over individual treatments and increased therapeutic response due to enhanced apoptosis.

Conclusion: The data provided show the utility of the ANLucBCLuc reporter in dynamic, noninvasive imaging of apoptosis and provides a rationale for use of this technology to optimize dose and schedule of novel therapies or to develop novel combination therapies using existing drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668201PMC
http://dx.doi.org/10.1158/1078-0432.CCR-07-0782DOI Listing

Publication Analysis

Top Keywords

imaging apoptosis
16
noninvasive imaging
12
peptide peptide
8
nluc cluc
8
bioluminescence activity
8
apoptosis
5
noninvasive
4
apoptosis application
4
application cancer
4
cancer therapeutics
4

Similar Publications

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

Unlabelled: Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function.

View Article and Find Full Text PDF

Fe/Mo-Based Lipid Peroxidation Nanoamplifier Combined with Adenosine Immunometabolism Regulation to Augment Anti-Breast Cancer Immunity.

Adv Mater

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China.

Immunogenic cell death (ICD)-mediated immunization strategies have great potential against breast cancer. However, traditional strategies neglect the increase in the immunosuppressive metabolite, adenosine (ADO), during ICD, leading to insufficient therapeutic outcomes. In this study, it is found that the adenosine A2A receptor (A2AR) is significantly expressed in breast cancer and positively associated with regulatory T (Treg) cells.

View Article and Find Full Text PDF

Correlation of SALL1 with CEUS Parameters and Immune Escape in Thyroid Carcinoma.

Biomed J

January 2025

Department of Medical imaging, Henan Provincial People's Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China.

Background: Contrast-enhanced ultrasonography (CEUS) is widely used to diagnose thyroid carcinoma (TC), though its accuracy in differentiating malignant nodules is limited. We identified TC-associated differentially expressed genes (DEGs) and examined the impact of these genes, particularly SALL1, on immune escape mechanisms within TC cells.

Methods And Materials: DEG analysis was conducted on GSE65144 dataset to identify genes associated with TC.

View Article and Find Full Text PDF

Neuropeptide Y in cancer-biological functions and potential clinical implications.

Cancer Metastasis Rev

January 2025

Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA.

Neuropeptide Y (NPY) is a sympathetic neurotransmitter widely distributed in the peripheral and central nervous system, affecting many physiological functions. Consequently, dysregulation of the NPY system contributes to numerous pathological disorders, including stress, obesity, and cancer. The pleiotropic functions of NPY in humans are mediated by G protein-coupled receptors (Y1R, Y2R, Y5R), which activate several signaling pathways and thereby regulate cell growth, differentiation, apoptosis, proliferation, angiogenesis, and metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!