The c-Met receptor tyrosine kinase has been implicated in cellular transformation induced by mutant Ras, a commonly activated proto-oncogene in non-small cell lung cancer (NSCLC). However, the role of c-Met has not been defined in K-ras-mutant NSCLC, a disease for which no effective targeted therapeutic options currently exist. To acquire a greater understanding of its role, we used genetic and pharmacologic approaches to inhibit c-Met in mice and cultured cells. In Kras(LA1) mice, which develop premalignant lung lesions that progress to multifocal lung adenocarcinomas owing to somatic mutations in K-ras, c-Met was expressed in multiple cell types within premalignant lung lesions, and high concentrations of HGF were detected in bronchoalveolar lavage samples. Short-term treatment with PHA-665752, a c-Met inhibitor, decreased the numbers of premalignant lung lesions and induced apoptosis in tumor cells and vascular endothelial cells within lesions. In cell culture, PHA-665752 induced apoptosis of a lung adenocarcinoma cell line derived from Kras(LA1) mice (LKR-13) and a murine lung endothelial cell line (MEC). c-Met depletion by siRNA transfection induced apoptosis of MECs but not LKR-13 cells. Collectively, these findings suggest that apoptosis was an on-target effect of PHA-665752 in MECs but not in LKR-13 cells. We conclude that PHA-665752 inhibited lung tumorigenesis in Kras(LA1) mice and may provide a novel therapeutic approach to the prevention of K-ras-mutant NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378059 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-07-2045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!