Organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are widely acknowledged as important and rate-limiting to the hepatic uptake of many drugs in clinical use. Accordingly, to better understand the in vivo relevance of OATP1B transporters, targeted disruption of murine Slco1b2 gene was carried out. It is noteworthy that Slco1b2(-/-) mice were fertile, developed normally, and exhibited no overt phenotypic abnormalities. We confirmed the loss of Oatp1b2 expression in liver using real-time polymerase chain reaction, Western Blot analysis, and immunohistochemistry. Expression of Oatp1a4 and Oatp2b1 but not Oatp1a1 was greater in female Slco1b2(-/-) mice, but expression of other non-OATP transporters did not significantly differ between wild-type and Slco1b2(-/-) male mice. Total bilirubin level was elevated by 2-fold in the Slco1b2(-/-) mice despite the fact that liver enzymes ALT and AST were normal. Pharmacological characterization was carried out using two prototypical substrates of human OATP1B1 and -1B3, rifampin and pravastatin. After a single intravenous dose of rifampin (1 mg/kg), a 1.7-fold increase in plasma area under the concentration-time curve (AUC) was observed, whereas the liver-to-plasma ratio was reduced by 5-fold, and nearly 8-fold when assessed at steady-state conditions after 24 h of continuous subcutaneous infusion in Slco1b2(-/-) mice. Likewise, continuous subcutaneous infusion at low (8 microg/h) or high (32 microg/h) dose rates of pravastatin resulted in a 4-fold lower liver-plasma ratio in the in Slco1b2(-/-) mice. This is the first report of altered drug disposition profile in the Slco1b2 knockout mice and suggests the utility of this model for understanding the in vivo role of hepatic OATP transporters in drug disposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562886PMC
http://dx.doi.org/10.1124/mol.108.046458DOI Listing

Publication Analysis

Top Keywords

slco1b2-/- mice
20
targeted disruption
8
disruption murine
8
organic anion-transporting
8
continuous subcutaneous
8
subcutaneous infusion
8
drug disposition
8
mice
7
slco1b2-/-
6
murine organic
4

Similar Publications

Dihydroartemisinin improves hypercholesterolemia in ovariectomized mice via enhancing vectorial transport of cholesterol and bile acids from blood to bile.

Bioorg Med Chem

January 2022

Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China. Electronic address:

The increase of concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum of postmenopausal women is the important risk factor of the high morbidity of cardiovascular diseases of old women worldwide. To test the anti-hypercholesterolemia function of dihydroartemisinin (DHA) in postmenopausal women, ovariectomized (OVX) mice were generated, and DHA were administrated to OVX mice for 4 weeks. The blood and liver tissues were collected for biochemical and histological tests respectively.

View Article and Find Full Text PDF

Low-dose methotrexate (MTX) is a first-line therapy for the treatment of arthritis. However, there is considerable interindividual variability in MTX exposure following standard dosing. Polymorphisms in SLCO1B1 significantly effect MTX clearance, altering therapeutic response.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a dietary mycotoxin that can cause nephrotoxicity, hepatotoxicity, neurotoxicity and carcinogenicity. We found that in mice OTA is transported by the drug transporters mouse (m)ABCB1 and/or mABCG2, mOATP1A/1B, and human (h)OATP1B3. The complete deletion of mABCB1 and mABCG2 resulted in ~2-fold higher OTA liver and kidney accumulation upon intravenous injection.

View Article and Find Full Text PDF

Interaction of Oatp1b2 expression and nonalcoholic steatohepatitis on pravastatin plasma clearance.

Biochem Pharmacol

April 2020

Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States. Electronic address:

The downregulation of hepatic uptake transporters, including those of the OATP family, are a well known consequence of nonalcoholic steatohepatitis (NASH). Prior studies have shown that the combination of NASH and Oatp1b2 knockout synergistically reduces the clearance of pravastatin (PRAV) in the methionine and choline deficient (MCD) mouse model of NASH, and the current study therefore aimed to determine the impact of NASH and genetic heterozygosity of Oatp1b2 on PRAV clearance, modeling the overlap between the 24% of the human population who are heterozygous for non-functioning OATP1B1, and the ~15% with NASH, potentially placing these people at higher risk of statin-induced myopathy. Therefore, male C57BL/6 wild-type (WT), Oatp1b2+/- (HET), and Oatp1b2-/- (KO) mice were fed either a control (methionine and choline sufficient) or methionine and choline-deficient (MCD) diet to induce NASH.

View Article and Find Full Text PDF

Cytarabine (Ara-C) is a nucleoside analog used in the treatment of acute myeloid leukemia (AML). Despite the many years of clinical use, the identity of the transporter(s) involved in the disposition of Ara-C remains poorly studied. Previous work demonstrated that concurrent administration of Ara-C with nitrobenzylmercaptopurine ribonucleoside (NBMPR) causes an increase in Ara-C plasma levels, suggesting involvement of one or more nucleoside transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!