We report theoretical and numerical evaluations of the phase diagram for a model of patchy particles. Specifically, we study hard spheres whose surface is decorated by a small number f of identical sites ("sticky spots") interacting via a short-ranged square-well attraction. We theoretically evaluate, solving the Wertheim theory, the location of the critical point and the gas-liquid coexistence line for several values of f and compare them to the results of Gibbs and grand canonical Monte Carlo simulations. We study both ordered and disordered arrangements of the sites on the hard-sphere surface and confirm that patchiness has a strong effect on the phase diagram: the gas-liquid coexistence region in the temperature-density plane is significantly reduced as f decreases. We also theoretically evaluate the locus of specific heat maxima and the percolation line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2888997 | DOI Listing |
Nat Commun
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.
The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble, CS 40220, 38043, France.
Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!