A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A nonvolatile plasmonic switch employing photochromic molecules. | LitMetric

A nonvolatile plasmonic switch employing photochromic molecules.

Nano Lett

Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.

Published: May 2008

We demonstrate a surface plasmon-polariton (SPP) waveguide all-optical switch that combines the unique physical properties of small molecules and metallic (plasmonic) nanostructures. The switch consists of a pair of gratings defined in an aluminum film coated with a 65 nm thick layer of photochromic (PC) molecules. The first grating couples a signal beam consisting of free space photons to SPPs that interact effectively with the PC molecules. These molecules can reversibly be switched between transparent and absorbing states using a free space optical pump. In the transparent (signal "on") state, the SPPs freely propagate through the molecular layer, and in the absorbing (signal "off") state, the SPPs are strongly attenuated. The second grating serves to decouple the SPPs back into a free space optical beam, enabling measurement of the modulated signal with a far-field detector. In a preliminary study, the switching behavior of the PC molecules themselves was confirmed and quantified by surface plasmon resonance spectroscopy. The excellent (16%) overlap of the SPP mode profile with the thin layer of switching molecules enabled efficient switching with power densities of approximately 6.0 mW/cm2 in 1.5 microm x 8 microm devices, resulting in plasmonic switching powers of 0.72 nW per device. Calculations further showed that modulation depths in access of 20 dB can easily be attained in optimized designs. The quantitative experimental and theoretical analysis of the nonvolatile switching behavior in this letter guides the design of future nanoscale optically or electrically pumped optical switches.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl0808839DOI Listing

Publication Analysis

Top Keywords

free space
12
photochromic molecules
8
space optical
8
state spps
8
switching behavior
8
molecules
7
switching
5
nonvolatile plasmonic
4
plasmonic switch
4
switch employing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!