The development of class- and isoform-selective histone deacetylase (HDAC) inhibitors is highly desirable for the study of the complex interactions of these proteins central to transcription regulation as well as for the development of selective HDAC inhibitors as drugs in epigenetics. To provide a structural basis for the rational design of such inhibitors, a combined computational and experimental study of inhibition of three different histone deacetylase isoforms, HDAC1, -6, and -8, with three different hydroxamate inhibitors is reported. While SAHA was found to be unselective for the inhibition of class I and class II HDACs, the other inhibitors were found to be selective toward class II HDACs. Molecular dynamics simulations indicate that this selectivity is caused by both the overall shape of the protein surface leading to the active site and specific interactions of an aspartate residue in a polar loop and two phenylalanines and a methionine in a nonpolar loop. Monitoring the specific interactions as a function of the simulation time identifies a key sulfur-pi interaction. The implications of the structural motifs for the design of class II-selective HDAC inhibitors are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm7015254DOI Listing

Publication Analysis

Top Keywords

histone deacetylase
12
hdac inhibitors
12
class ii-selective
8
class hdacs
8
specific interactions
8
inhibitors
7
class
5
structural origin
4
origin selectivity
4
selectivity class
4

Similar Publications

Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.

View Article and Find Full Text PDF

Sirtuin 7 (SIRT7), a member of the sirtuin family of NAD+-dependent deacetylases, plays a vital role in cancer, exhibiting context-dependent functions across various malignancies. Our study investigates the role of SIRT7 depletion in head and neck squamous cell carcinoma (HNSCC) progression. In vitro and 3D organotypic models demonstrated that SIRT7 knock-out attenuates cancer cell viability, proliferation, and motility as well as induces downregulation of migration- and epithelial-mesenchymal transition (EMT)-related gene expression.

View Article and Find Full Text PDF

Calycosin‑7‑O‑β‑D‑glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen‑glucose deprivation/reperfusion‑induced injury.

Mol Med Rep

March 2025

Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‑Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.

Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function.

View Article and Find Full Text PDF

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

Objectives: To explore the mechanism by which histone deacetylase 1 (HDAC1) regulates steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells.

Methods: MLY-O4 cells were treated with 400 nmol/L trichostatin A (TSA) or 1 mmol/L dexamethasone for 24 h or transfected with a HDAC1-overexpressing vector prior to TSA or dexamethasone treatment. The changes in the expressions of HDAC1, SP1, cleaved caspase-3 and Bax, SP1 acetylation level, cell proliferation, and cell apoptosis were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!