Background: Reduced-size livers suffer from portal hyperperfusion, diminished arterial blood flow and the risk of postoperative liver injury. The aim of this experimental study was to unravel the role of nitric oxide in this setting.

Methods: Rats underwent 85 per cent partial hepatectomy and either substitution of nitric oxide with molsidomine or inhibition of nitric oxide synthase (NOS) with N(G)-nitro-L-arginine methyl ester. Untreated hepatectomized animals served as controls and unresected animals as the sham group.

Results: Ultrasonic flowmetry following partial hepatectomy revealed a marked increase in portal venous inflow with a concomitant decrease in hepatic arterial inflow. Nitric oxide substitution counteracted the decline in hepatic arterial inflow and caused a significantly greater increase in cell proliferation after partial hepatectomy compared with control or NOS-inhibited animals. Hepatectomized animals further profited from nitric oxide substitution, as indicated by reduced aminotransferase release and improved liver function.

Conclusion: Nitric oxide improves the postoperative course of rats with reduced-size livers by modulating hepatic macrohaemodynamics and mediating regeneration and cytoprotection, but not by reducing hepatic hyperperfusion and the accompanying sinusoidal shear stress.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bjs.6139DOI Listing

Publication Analysis

Top Keywords

nitric oxide
28
reduced-size livers
12
hepatic arterial
12
partial hepatectomy
12
hepatectomized animals
8
arterial inflow
8
oxide substitution
8
nitric
7
oxide
6
hepatic
5

Similar Publications

In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction.

View Article and Find Full Text PDF

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

Background: Monovalent biologics blocking thymic stromal lymphopoietin or interleukin-13 have been shown to elicit pharmacodynamic responses in asthma following a single dose. Therefore, dual blockade of these cytokines may result in an enhanced response compared to single targeting and has the potential to break efficacy ceilings in asthma. This study assessed the safety and tolerability of lunsekimig, a bispecific NANOBODY molecule that blocks thymic stromal lymphopoietin and interleukin-13, and its effect on Type 2 inflammatory biomarkers and lung function in asthma.

View Article and Find Full Text PDF

This Month in JAAD International: April 2025: Options of molluscum contagiosum management.

J Am Acad Dermatol

January 2025

From the Department of Dermatology, Center for Global Health, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania and Florida Center for Dermatology, St Augustine, Florida. Electronic address:

View Article and Find Full Text PDF

Innate immune function in chronic rhinosinusitis.

J Allergy Clin Immunol

January 2025

Division of Rhinology, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine; Monell Chemical Senses Center, Philadelphia; PA; Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!