Ca(v)beta subunits support voltage gating of Ca(v)1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Ca(v)beta binds to the alpha-interaction domain (AID) and the IQ motif of the pore-forming alpha(1C) subunit, but these two interactions do not explain why the cardiac Ca(v)beta(2) subunit splice variants differentially modulate inactivation of Ca(2+) currents (I(Ca)). Previously we described beta(2Deltag), a functionally active splice variant of human Ca(v)beta(2) lacking MAGUK. By deletion analysis of beta(2Deltag), we have now identified a 41-amino acid C-terminal essential determinant (beta(2)CED) that stimulates I(Ca) in the absence of Ca(v)beta subunits and conveys a +20-mV shift in the peak of the I(Ca)-voltage relationship. The beta(2)CED is targeted by alpha(1C) to the plasma membrane, forms a complex with alpha(1C) but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the alpha(1C) subunit C terminus as a functionally relevant beta(2)CED binding site. The beta(2)CED interacts with LA/IQ in a Ca(2+)- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Ca(v)beta(2)/alpha(1C) interactions is sufficient to support I(Ca). However, beta(2)CED does not support Ca(2+)-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca(2+)-induced inactivation. The beta(2)CED is conserved only in Ca(v)beta(2) subunits. Thus, beta(2)CED constitutes a previously unknown integrative part of the multifactorial mechanism of Ca(v)beta(2)-subunit differential modulation of the Ca(v)1.2 calcium channel that in beta(2Deltag) occurs without MAGUK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2414265PMC
http://dx.doi.org/10.1074/jbc.M802035200DOI Listing

Publication Analysis

Top Keywords

cav12 calcium
12
cavbeta2 subunit
8
modulation cav12
8
calcium channel
8
cavbeta subunits
8
alpha1c subunit
8
beta2ced
7
determinant cavbeta2
4
subunit
4
subunit modulation
4

Similar Publications

Ca1 and Ca2 voltage-gated calcium channels evolved from an ancestral Ca1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian Ca1 channels are uniquely subject to pronounced, buffer-resistant Ca/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca rises.

View Article and Find Full Text PDF

The dominant role of Ca2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of Ca2 and Ca1 channels, and less so Ca3 channels, it is unclear why there have not been major shifts toward dependence on other Ca channels for synaptic transmission. Here, we provide a structural and functional profile of the Ca2 channel cloned from the early-diverging animal , which lacks a nervous system but possesses single gene homologues for Ca1-Ca3 channels.

View Article and Find Full Text PDF

Ca channels reject signaling from a second CaM in eliciting Ca-dependent feedback regulation.

J Biol Chem

October 2020

Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA. Electronic address:

Calmodulin (CaM) regulation of voltage-gated calcium (Ca1-2) channels is a powerful Ca-feedback mechanism to adjust channel activity in response to Ca influx. Despite progress in resolving mechanisms of CaM-Ca feedback, the stoichiometry of CaM interaction with Ca channels remains ambiguous. Functional studies that tethered CaM to Ca1.

View Article and Find Full Text PDF

Calmodulin regulation (calmodulation) of voltage-gated calcium channels.

J Gen Physiol

June 2014

Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205Calcium Signals Laboratory, Department of Biomedical Engineering, Department of Neuroscience, and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Calmodulin regulation (calmodulation) of the family of voltage-gated CaV1-2 channels comprises a prominent prototype for ion channel regulation, remarkable for its powerful Ca(2+) sensing capabilities, deep in elegant mechanistic lessons, and rich in biological and therapeutic implications. This field thereby resides squarely at the epicenter of Ca(2+) signaling biology, ion channel biophysics, and therapeutic advance. This review summarizes the historical development of ideas in this field, the scope and richly patterned organization of Ca(2+) feedback behaviors encompassed by this system, and the long-standing challenges and recent developments in discerning a molecular basis for calmodulation.

View Article and Find Full Text PDF

Rad/Rem/Gem/Kir (RGK) GTPases potently inhibit Ca(V)1 and Ca(V)2 (Ca(V)1-2) channels, a paradigm of ion channel regulation by monomeric G-proteins with significant physiological ramifications and potential biotechnology applications. The mechanism(s) underlying how RGK proteins inhibit I(Ca) is unknown, and it is unclear how key structural and regulatory properties of these GTPases (such as the role of GTP binding to the nucleotide binding domain (NBD), and the C-terminus which contains a membrane-targeting motif) feature in this effect. Here, we show that Rem inhibits Ca(V)1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!