From liquid to air: breathing after birth.

J Pediatr

Division of Newborn Services, Royal Women's Hospital, Carlton, Victoria, Australia.

Published: May 2008

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpeds.2007.10.041DOI Listing

Publication Analysis

Top Keywords

liquid air
4
air breathing
4
breathing birth
4
liquid
1
breathing
1
birth
1

Similar Publications

Due to its anatomical and physiological similarities to the human eye, the porcine eye serves as a robust model for biomedical research and ocular toxicity assessment. An air/liquid corneal culture system using porcine eyes was developed, and ex vivo epithelial wound healing was utilized as a critical parameter for these studies. Fresh pig corneas were processed for organ culture, with or without epithelial wounding.

View Article and Find Full Text PDF

Mg-B-O Coated P2-Type Hexagonal NaMnNiO as a High-Performance Cathode for Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.

P2-type NaMnNiO as the cathode for sodium-ion batteries, has a relatively high theoretical specific capacity, but its unstable crystal structure and undesirable phase transitions lead to rapid capacity decay. In this work, Mg-B-O coated NaMnNiO microspheres have been synthesized via a liquid-phase method based on solvothermal synthesized NaMnNiO. The Mg-B-O coating layer significantly improves the electrochemical performance, including specific capacity, rate capability, and cycle stability.

View Article and Find Full Text PDF

Background: The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures.

Results: We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response.

View Article and Find Full Text PDF

Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces.

View Article and Find Full Text PDF

Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding.

J Colloid Interface Sci

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China. Electronic address:

Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!