During the oxidation of LDL, a central pathophysiological component of atherogenesis, a wide variety of chemical and physical changes occur leading to the generation of oxidation-specific neoepitopes. These epitopes are not only immunogenic, leading to adaptive humoral responses, but are also a prominent target of multiple arcs of innate immunity. The pattern recognition receptors (PRRs) of innate immunity are germ line encoded, conserved by natural selection, and bind to pathogen-associated molecular patterns (PAMPs) common on multiple structures. However, it is not intuitive as to why they should recognize oxidation-specific neoepitopes. Yet it is clear that multiple macrophage scavenger receptors, which are classic PRRs, recognize oxidation-specific epitopes, such as those found on oxidized LDL (OxLDL). Other innate proteins, such as C-reactive protein, also bind to OxLDL. Natural antibodies (NAbs), the humoral arc of innate immunity, provide a nonredundant role in the first line of defence against pathogens, but are also believed to provide important homeostatic house-keeping functions against self-antigens. Our work demonstrates that oxidation-specific epitopes, as found on OxLDL, are a major target of NAbs. In this review, we will discuss the specific example of the prototypic NAb T15/E06, which is increased in atherosclerotic mice and mediates atheroprotection, and discuss the potential role of NAbs in atherogenesis, and in inflammation in general. We also review data that oxidation-specific epitopes are generated whenever cells undergo programmed cell death, forming a common set of PAMPs recognized by oxidation-specific PRRs on macrophages, NAbs and innate proteins. We present the hypothesis that oxidation-specific epitopes on apoptotic cells exerted evolutionary pressure for the conservation of these PRRs and also serve to maintain the expansion of a substantial proportion of NAbs directed to these stress-induced self-antigens.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2796.2008.01968.xDOI Listing

Publication Analysis

Top Keywords

oxidation-specific epitopes
20
innate immunity
16
oxidation-specific
8
oxidation-specific neoepitopes
8
recognize oxidation-specific
8
innate proteins
8
innate
6
epitopes
5
nabs
5
epitopes targets
4

Similar Publications

Identification of plasma proteins binding oxidized phospholipids using pull-down proteomics and OxLDL masking assay.

J Lipid Res

November 2024

Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria. Electronic address:

Article Synopsis
  • Oxidized phospholipids (OxPLs) are recognized as harmful substances that promote inflammation, highlighting the need to understand how they can be detoxified by various plasma proteins.
  • Researchers conducted pull-down-proteomic analysis to identify around 150 non-immunoglobulin proteins that specifically bind to oxidized phospholipids, particularly OxPAPC.
  • The study confirmed that these proteins, alongside known oxidized phospholipid-binding proteins, can effectively mask OxPLs, potentially influencing their recognition by the immune system.
View Article and Find Full Text PDF
Article Synopsis
  • IgMs produced by a specific subtype of B cells protect against inflammation and diet-induced atherosclerosis by inactivating harmful lipid oxidation products.
  • This study identifies human marginal zone B (MZB) cells as the main source of these protective IgMs through advanced techniques like single-cell mass cytometry and testing in humanized mice.
  • Treatment that reduces MZB cells leads to increased vascular inflammation, showing their protective role, while findings also indicate that higher MZB cell presence correlates with less severity in coronary artery disease in patients.
View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease whose progression is fueled by proinflammatory moieties and limited by anti-inflammatory mediators. Whereas oxidative damage and the generation of oxidation-specific epitopes that act as damage-associated molecular patterns are highly inflammatory, IgM antibodies produced by B-1 and marginal zone B cells counteract unrestricted inflammation by neutralizing and encouraging clearance of these proinflammatory signals. In this review, we focus on describing the identities of IgM-producing B cells in both mice and humans, elaborating the mechanisms underlying IgM production, and discussing the potential strategies to augment the production of atheroprotective IgM.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity.

View Article and Find Full Text PDF

Aims: The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!