In flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species. Fluorescence microscopy was used to determine the presence of chloroplasts within cells of aquatic roots. Net O(2) production by excised aquatic roots, when underwater, was measured with varying light and CO(2) regimes; the apparent maximum capacity (P(max)) for underwater net photosynthesis in aquatic roots was 0.45 micromol O(2) m(-2) s(-1). The photosynthetic potential of these roots was supported by the immunolocalization of PsbA, the major protein of photosystem II, and ribulose-1-5-bisphosphate carboxylase/oxygenase (Rubisco) in root protein extracts. Chlorophyllous aquatic roots of T. pergranulata are photosynthetically active, and such activity is a previously unrecognized source of O(2), and potentially carbohydrates, in flooded and submerged plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2008.01813.x | DOI Listing |
PeerJ
January 2025
Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
The taxonomic complexity of the families Clathrozoidae and Clathrozoellidae, rooted in early 20th-century hydroid descriptions, highlights the need for comprehensive and detailed morphological analyses. This study aimed to elucidate the histology of the polypoid stage of Peña Cantero, Vervoort & Watson, 2003, with a particular emphasis on its exoskeletal structure. Specimens from the National Museum of Natural History were examined histologically using different staining techniques.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China.
NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.
View Article and Find Full Text PDFSci Rep
December 2024
Norwegian Institute for Nature Research, Postbox 5685, 7485, Trondheim, Norway.
The Atlantic salmon (Salmo salar) is an iconic species of significant ecological and economic importance. Their downstream migration as smolts represents a critical life-history stage that exposes them to numerous challenges, including passage through hydropower plants. Understanding and predicting fine-scale movement patterns of smolts near hydropower plants is therefore essential for adaptive and effective management and conservation of this species.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2025
Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
Factors influencing variance of DNA methylation in vegetatively reproducing plants, both terrestrial plants and aquatic seagrasses, is just beginning to be understood. Improving our knowledge of these mechanisms will increase understanding of transgenerational epigenetics in plant clones, of the relationship between DNA methylation and seagrass development, and of the drivers of epigenetic variation, which may underly acclimation in clonally reproducing plants. Here, we sampled leaves, rhizomes and roots of three physically and spatially separated ramet sections from a clonally propagated field of the seagrass Zostera marina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!