The regional abundance of C(4) grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C(3) and C(4) grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C(3) and C(4) subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C(4) than C(3) subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C(4) plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C(4) subspecies under irrigated conditions from spring through autumn. However, the C(4) leaves were killed by winter frost, while photosynthesis continued in the C(3) plants. Unexpectedly, the C(4) subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C(3) and C(4) grasses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2008.01815.xDOI Listing

Publication Analysis

Top Keywords

photosynthetic advantage
12
alloteropsis semialata
8
drought events
8
irrigated conditions
8
subspecies
5
seasonal differences
4
photosynthesis
4
differences photosynthesis
4
photosynthesis subspecies
4
subspecies alloteropsis
4

Similar Publications

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations.

View Article and Find Full Text PDF

As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (FeONPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.

View Article and Find Full Text PDF

C-metabolic flux analysis of respiratory chain disrupted strain ΔndhF1 of Synechocystis sp. PCC 6803.

Appl Biochem Biotechnol

January 2025

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Cyanobacteria are advantageous hosts for industrial applications toward achieving sustainable society due to their unique and superior properties such as atmospheric CO fixation via photosynthesis. However, cyanobacterial productivities tend to be weak compared to heterotrophic microbes. To enhance them, it is necessary to understand the fundamental metabolic mechanisms unique to cyanobacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!