Transmissible spongiform encephalopathies (TSEs) are a group of diseases of infectious, sporadic and genetic origin, found in higher organisms and caused by the pathological form of the prion protein. The inheritable subgroup of TSEs is linked to insertional or point mutations in the prion gene prnp, which favour its misfolding and are passed on to offspring in an autosomal-dominant fashion. The large majority of patients with these diseases are heterozygous for the prnp gene, leading to the coexpression of the wild-type (wt) (PrP(C)) and the mutant forms (PrPmut) in the carriers of these mutations. To mimic this situation in vitro, we produced Fischer rat thyroid cells coexpressing PrPwt alongside mutant versions of mouse PrP including A117V, E200K and T182A relevant to the human TSE diseases Gestmann-Sträussler-Scheinker (GSS) disease and familial Creutzfeldt-Jakob disease (fCJD). We found that coexpression of mutant PrP with wt proteins does not affect the glycosylation pattern or the biochemical characteristics of either protein. However, FRET and co-immunoprecipitation experiments suggest an interaction occurring between the wt and mutant proteins. Furthermore, by comparing the intracellular localization and detergent-resistant membrane (DRM) association in single- and double-expressing clones, we found changes in the intracellular/surface ratio and an increased sequestration of both proteins in DRMs, a site believed to be involved in the pathological conversion (or protection thereof) of the prion protein. We, therefore, propose that the mutant forms alter the subcellular localization and the membrane environment of the wt protein in co-transfected cells. These effects may play a role in the development of these diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0854.2008.00746.x | DOI Listing |
Pharmaceuticals (Basel)
November 2024
Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
Biomedicines
December 2024
Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
: FAT10 is a member of the ubiquitin-like modifier family. Similar to ubiquitin, FAT10 has a distinct enzyme cascade consisting of E1-activating, E2-conjugating, and possibly several E3-ligating enzymes, which will covalently link FAT10 to substrate proteins in order to target them directly for proteasomal degradation. FAT10 was reported to be phosphorylated by IKKβ during infection with influenza A virus.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, Baylor College of Medicine, Houston, United States.
Case Rep Genet
December 2024
Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA.
Structural or electrophysiologic cardiac anomalies may compromise cardiac function, leading to sudden cardiac death (SCD). Genetic screening of families with severe cardiomyopathies underlines the role of genetic variations in cardiac-specific genes. The present study details the clinical and genetic characterization of a malignant dilated cardiomyopathy (DCM) case in a 1-year-old Mexican child who presented a severe left ventricular dilation and dysfunction that led to SCD.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!