The hedgehog (Hh) signaling pathway has been reported to be associated with the growth of pancreatic cancer, but its role in the invasive phenotype is poorly understood. Therefore, we investigated the role of the Hh pathway in pancreatic cancer cell invasiveness using a Matrigel invasion assay. Blockade of the Hh pathway by cyclopamine inhibited pancreatic cancer cell invasion in association with a decreased expression of matrix metalloproteinase (MMP)-9. By contrast, activation of the Hh pathway by the addition of exogenous Sonic hedgehog increased cell invasion and MMP-9 expression. Stable transfection of pancreatic cancer cells with Gli1 increased their invasiveness, which was associated with activation of MMP-9. We also showed that inhibition of MMP-9 by small interfering RNA blocked the increased invasiveness of Gli1-transfected cells. Furthermore, inhibition of Gli1 by small interfering RNA suppressed the invasiveness and MMP-9 expression of pancreatic cancer cells. Taken together, these findings suggest that members of the Hh pathway, especially Gli1, play an important role in the invasiveness of pancreatic cancer cells through the regulation of MMP-9 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159230 | PMC |
http://dx.doi.org/10.1111/j.1349-7006.2008.00822.x | DOI Listing |
World J Surg Oncol
January 2025
Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, China.
Schwannomas are tumors that originate from the glial cells of the nervous system and can occur on myelinated nerve fibers throughout the body, especially in the craniofacial region. However, pancreatic schwannomas are extremely rare. We report a case of a pancreatic schwannoma that was difficult to differentiate from other pancreatic tumors preoperatively.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
J Nanobiotechnology
January 2025
Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
BMC Cancer
January 2025
Department of Medical Oncology, Cancer Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
Background: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with limited treatment options yielding poor outcomes. This study aimed to evaluate the real-world clinical characteristics, treatment patterns, and outcomes of patients with locally advanced unresectable and de-novo metastatic PDAC in Saudi Arabia, providing regional data to compare with international benchmarks.
Methods: This is a retrospective, multicentre study involving 350 patients diagnosed with unresectable locally advanced or de-novo metastatic PDAC between January 2015 and November 2023.
BMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!