Docking, scoring, molecular dynamics (MD), and the linear interaction energy (LIE) method are used here to predict binding modes and affinities for a set of 43 non-nucleoside inhibitors to HIV-1 reverse transcriptase. Starting from a crystallographic structure, the binding modes of 43 inhibitors are predicted using automated docking. The Goldscore scoring function and the LIE method are then used to determine the relative binding free energies for the inhibitors. The Goldscore scoring function does not reproduce the relative binding affinities for the inhibitors, while the standard parametrization of the LIE method reproduces the experimental binding free energies for 39 inhibitors with an R (2) = 0.70 and an unsigned average error of 0.8 kcal/mol. The present calculations provide a validation of the combination of docking, MD, and LIE as a powerful tool in structure-based drug design, and the methodology is easily scalable for attaining a higher throughput of compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm7012198DOI Listing

Publication Analysis

Top Keywords

binding modes
12
lie method
12
molecular dynamics
8
dynamics linear
8
linear interaction
8
interaction energy
8
method predict
8
predict binding
8
modes affinities
8
non-nucleoside inhibitors
8

Similar Publications

Multi-group structure analysis and molecular docking of aptamers and small molecules: A case study of chloramphenicol.

Biochem Biophys Res Commun

January 2025

College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China. Electronic address:

Aptamers, a kind of short nucleotide sequences with high specificity and affinity with targets, have attracted extensive attention in recent years. Molecular docking method (MDM) is the most common method to explore the binding mode and recognition mechanism of aptamers and small molecules, which generally use the target to dock with the highest scoring tertiary structural model of the aptamer, and the highest scoring result is used as the predicted model. However, this prediction results may miss out the true interaction pattern due to the fact that aptamers are not completely rigid and the natural aptamers conformations are not in a single state.

View Article and Find Full Text PDF

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!