Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) have been reported to occur in urban air. Nevertheless, sources of CIPAHs in urban air have not been studied, due to the lack of appropriate analytical methods and standards. In this study, we measured concentrations of 20 CIPAHs and 11 brominated PAHs (BrPAHs) in fly ash and bottom ash from 11 municipal/hazardous/industrial waste incinerators, using analytical standards synthesized in our laboratory. Concentrations of total CIPAHs and BrPAHs in ash samples ranged from <0.06 to 6990 ng/g and from <0.14 to 1235 ng/g, respectively. The concentrations of CIPAHs were approximately 100-fold higher than the concentrations of BrPAHs. 6-CIBaP and 1-CIPyr were the dominant compounds in fly ash samples. The profiles of halogenated PAHs were similar to the profiles reported previously for urban air. 1-BrPyr was the predominant BrPAH in fly ash. Concentrations of 6-CIBaP, 9,10-Cl2Phe, 9-CIAnt, and 6-BrBaP in fly ash were significantly correlated with the corresponding parent PAH concentrations. Significant correlation between sigmaCIPAH and sigmaPAH concentrations suggests that direct chlorination of parent PAHs is the mechanism of formation of CIPAHs during incineration of wastes; nevertheless, a comparable correlation was not found for BrPAHs. There was no significant correlation between the capacity and temperature of an incinerator and the concentrations of sigmaCl-/BrPAHs in ash samples, although lower concentrations of all halogenated PAHs were found in stoker-type incinerators than in fixed grate-type incinerators. Toxicity equivalency quotients (TEQs) for CIPAHs in ash samples were calculated with CIPAH potencies. Average TEQ concentrations of CIPAHs in fly ash and bottom ash were15800 pg-TEQ/g and 67 pg-TEQ/g, respectively. Our results suggest that the extent of dioxin-like toxicity contributed by CIPAHs in ash generated during waste incineration is similar to that reported previously for dioxins. Waste incineration is an important source of Cl-/BrPAHs in the urban atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es703001f | DOI Listing |
BMC Public Health
January 2025
Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
Background: Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that can cause a variety of health problems. This study sought to determine whether there was a relationship between PAHs and current asthma in adults.
Methods: This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016 and employed multifactor logistic regression, subgroup analyses, and smoothed curve fitting to examine the linear and nonlinear associations between PAHs and current asthma.
Environ Sci Pollut Res Int
January 2025
Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens Veg 5, 7031, Trondheim, Norway.
The characterization of tunnel wash water (TWW) from 12 Norwegian tunnels showed very high concentrations of total suspended solids (TSS), metals, and polycyclic aromatic hydrocarbons (PAHs). Iron (Fe), aluminum (Al), and manganese (Mn) were mainly particle-associated. They are efficiently removed by sedimentation, while the dissolved concentrations of toxic metals like Cu, Zn, and As did not change.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, Ohio.
Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.
Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!