The "evolution of increased competitive ability" (EICA) hypothesis proposes that escape from natural enemies, e.g., after transcontinental introductions, alters the selection regime because costly defenses no longer enhance fitness. Such an evolutionary loss of defenses enables resources to be directed toward growth or other traits improving performance. We tested the EICA hypothesis in a novel framework in which the natural enemy is the traveler that follows its widespread host by accidental or deliberate (biocontrol) introductions. In a greenhouse experiment we used populations of Senecio vulgaris from North America, Europe, and Australia that differ in the history of exposure to the rust fungus Puccinia lagenophorae. Contrary to what is predicted by EICA, we found no evidence for increased levels of resistance to the rust fungus in plant populations with a longer history of rust exposure (Australia). Similarly, there was no evidence for reduced fecundity in these populations, although vegetative vigor, measured as secondary branching and growth rate, was lower. The maintenance of high rust resistance in populations with no (North America) or only a short history (Europe) of rust exposure is surprising given that resistance seems to incur considerable fitness costs, as indicated by the negative association between family mean resistance and fitness in the absence of disease observed for all three continents. The comparison of population differentiation in quantitative traits with estimates of differentiation in amplified fragment length polymorphic (AFLP) markers suggests that a number of fitness-related traits are under divergent selection among the studied populations. The proposed framework to test changes in the evolutionary trajectory underlying EICA can be employed in an expanded range of systems. These may include investigations on a cosmopolitan weed or crop when an antagonist is expanding its geographic range (such as our study), studies along a chronosequence of introduction time with expected increasing accumulation of natural enemies over time, or comparisons between introduced plant populations that differ in exposure time to biocontrol organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/07-0160.1 | DOI Listing |
A suite of plant traits is thought to make weed populations highly invasive, including vigorous growth and reproduction, superior competitive ability, and high dispersal ability. Using a breeding design and a common garden experiment, we tested whether such an "invasion syndrome" has evolved in an invasive range of , and whether the evolution is likely to be genetically constrained. We found an overall shift in invasive phenotypes between native North American and invasive Japanese populations.
View Article and Find Full Text PDFSci Rep
September 2023
Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-089, Warszawa, Poland.
Understanding the evolutionary mechanisms behind invasion success enables predicting which alien species and populations are the most predisposed to become invasive. Parasites may mediate the success of biological invasions through their effect on host fitness. The evolution of increased competitive ability (EICA) hypothesis assumes that escape from parasites during the invasion process allows introduced species to decrease investment in immunity and allocate resources to dispersal and reproduction.
View Article and Find Full Text PDFSci Total Environ
November 2023
Università degli Studi di Milano, Department of Veterinary Medicine and Animal Science, Via dell'Università 6, 26900 Lodi, Italy; Università degli Studi di Milano, WildlifeHealth Lab, Via dell'Università 6, 26900 Lodi, Italy.
Aging Clin Exp Res
June 2023
National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy.
This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer's disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed.
View Article and Find Full Text PDFTrials
December 2022
Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!