The combination of efficient light emission and high charge-carrier mobility has thus far proved elusive for polymer semiconductors, with high mobility typically achieved by cofacial pi-electron system to pi-electron system interactions that quench exciton luminescence. We report a new strategy, comprising the introduction of a limited number of more effective hopping sites between otherwise relatively isolated, and thus highly luminescent, polyfluorene chains. Our approach results in polymer films with large mobility (mu approximately 3-6 x 10(-2) cm2 V-1 s-1) and simultaneously excellent light-emission characteristics. These materials are expected to be of interest for light-emitting transistors, light-emitting diode sources for optical communications and may offer renewed hope for electrically pumped laser action. In the last context, optically pumped distributed feedback lasers comprising one-dimensional etched silica grating structures coated with polymer have state-of-the-art excitation thresholds (as low as 30 W cm(-2) (0.1 nJ per pulse or 0.3 microJ cm-2) for 10 Hz, 12 ns, 390 nm excitation) and slope efficiencies (up to 11%).

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat2165DOI Listing

Publication Analysis

Top Keywords

charge-carrier mobility
8
polymer films
8
pi-electron system
8
simultaneous optimization
4
optimization charge-carrier
4
mobility
4
mobility optical
4
optical gain
4
gain semiconducting
4
polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!