Chicken liver bile acid-binding protein (L-BABP) is a member of the fatty acid-binding proteins super family. The common fold is a beta-barrel of ten strands capped with a short helix-loop-helix motif called portal region, which is involved in the uptake and release of non-polar ligands. Using multiple-run molecular dynamics simulations we studied the interactions of L-BABP with lipid membranes of anionic and zwitterionic phospholipids. The simulations were in agreement with our experimental observations regarding the electrostatic nature of the binding and the conformational changes of the protein in the membrane. We observed that L-BABP migrated from the initial position in the aqueous bulk phase to the interface of anionic lipid membranes and established contacts with the head groups of phospholipids through the side of the barrel that is opposite to the portal region. The conformational changes in the protein occurred simultaneously with the binding to the membrane. Remarkably, these conformational changes were observed in the portal region which is opposite to the zone where the protein binds directly to the lipids. The protein was oriented with its macrodipole aligned in the configuration of lowest energy within the electric field of the anionic membrane, which indicates the importance of the electrostatic interactions to determine the preferred orientation of the protein. We also identified this electric field as the driving force for the conformational change. For all the members of the fatty acid-binding protein family, the interactions with lipid membranes is a relevant process closely related to the uptake, release and transfer of the ligand. The observations presented here suggest that the ligand transfer might not necessarily occur through the domain that directly interacts with the lipid membrane. The interactions with the membrane electric field that determine orientation and conformational changes described here can also be relevant for other peripheral proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2008.02.015 | DOI Listing |
Gut Microbes
December 2025
Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.
View Article and Find Full Text PDFJ Control Release
January 2025
Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile. Electronic address:
Background: Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier.
View Article and Find Full Text PDFJ Control Release
January 2025
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Post-surgical tumor recurrence poses a major challenge in cancer treatment due to residual tumor cells and surgery-induced immunosuppression. Here, we developed hybrid nanoparticles, termed T-DCNPs, designed to promote antigen-specific activation of cytotoxic CD8+ T cells while concurrently inhibiting immunosuppressive pathways within the tumor microenvironment. T-DCNPs were formulated by co-extruding lipid nanoparticles containing a transforming growth factor β inhibitor with dendritic cells that were pre-treated with autologous neoantigens derived from surgically excised tumors.
View Article and Find Full Text PDFPharmacol Res
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:
β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan. Electronic address:
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!