Large anisotropy of electrical properties in layer-structured In2Se3 nanowires.

Nano Lett

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.

Published: May 2008

Layer-structured indium selenide (In 2Se 3) nanowires (NWs) have large anisotropy in both shape and bonding. In 2Se 3 NWs show two types of growth directions: [11-20] along the layers and [0001] perpendicular to the layers. We have developed a powerful technique combining high-resolution transmission electron microscopy (HRTEM) investigation with single NW electrical transport measurement, which allows us to correlate directly the electrical properties and structure of the same individual NWs. The NW devices were made directly on a 50 nm thick SiN x membrane TEM window for electrical measurements and HRTEM study. NWs with the [11-20] growth direction exhibit metallic behavior while the NWs grown along the [0001] direction show n-type semiconductive behavior. Excitingly, the conductivity anisotropy reaches 10 (3)-10 (6) at room temperature, which is 1-3 orders magnitude higher than the bulk ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl080524dDOI Listing

Publication Analysis

Top Keywords

large anisotropy
8
electrical properties
8
nws
5
electrical
4
anisotropy electrical
4
properties layer-structured
4
layer-structured in2se3
4
in2se3 nanowires
4
nanowires layer-structured
4
layer-structured indium
4

Similar Publications

High Speed Sintering of Polyamide 12: From Powder to Part Properties.

Polymers (Basel)

December 2024

Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Universitaetsstrasse 9, 95447 Bayreuth, Germany.

High Speed Sintering (HSS) is an additive manufacturing process with great potential to produce complex, high-quality polymer parts on an industrial scale. However, little information is currently available on the characteristics of the powder materials used and the part properties that can be achieved. This is also the case for the standard material polyamide 12 (PA 12) and the first commercially available HSS machine, the VX200 HSS.

View Article and Find Full Text PDF

Study on Properties of Additive Manufacturing Ta10W Alloy Laser-Welded Joints.

Materials (Basel)

December 2024

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 15001, China.

This investigation focuses on Selective Laser Melting (SLM)-fabricated thin-walled Ta10W alloy components. Given the inherent limitations of SLM in producing large-scale, complex components in a single operation, laser welding was investigated as a viable secondary processing method for component integration. The study addresses the critical issue of weldability in additively manufactured tantalum-tungsten alloys, which frequently exhibit internal defects due to process imperfections.

View Article and Find Full Text PDF

Strain-Reduced Inversion Symmetry in Ultrathin SnPSe Crystals for Giant Bulk Piezophotovoltaic Generation.

ACS Nano

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.

View Article and Find Full Text PDF

Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-FeO with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex.

View Article and Find Full Text PDF

Conductivity is an important indicator of the health of aquatic ecosystems. We model large amounts of lake conductivity data collected as part of the United States Environmental Protection Agency's National Lakes Assessment using spatial indexing, a flexible and efficient approach to fitting spatial statistical models to big data sets. Spatial indexing is capable of accommodating various spatial covariance structures as well as features like random effects, geometric anisotropy, partition factors, and non-Euclidean topologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!