AI Article Synopsis

Article Abstract

We describe herein the discovery and development of a series of 4-arylthieno[3,2-d]pyrimidines which are potent adenosine A(2A) receptor antagonists. These novel compounds show high degrees of selectivity against the human A(1), A(2B) and A(3) receptor sub-types. Moreover, a number of these compounds show promising activity in vivo, suggesting potential utility in the treatment of Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.03.076DOI Listing

Publication Analysis

Top Keywords

adenosine a2a
8
a2a receptor
8
antagonists human
4
human adenosine
4
receptor design
4
design synthesis
4
synthesis 4-arylthieno[32-d]pyrimidine
4
4-arylthieno[32-d]pyrimidine derivatives
4
derivatives describe
4
describe discovery
4

Similar Publications

Parkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60.

View Article and Find Full Text PDF

Taurine alleviates dysfunction of cholesterol metabolism under hyperuricemia by inhibiting A2AR-SREBP-2/CREB/HMGCR axis.

J Lipid Res

January 2025

State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:

Dysfunctional cholesterol metabolism is highly prevalent in patients with hyperuricemia. Both uric acid and cholesterol are independent risk factors for atherosclerosis, contributing to an increased incidence of cardiovascular disease in hyperuricemia. Investigating the pathological mechanisms underlying cholesterol metabolism dysfunction in hyperuricemia is essential.

View Article and Find Full Text PDF

Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset.

View Article and Find Full Text PDF

GPCR oligomerization across classes: A2AR-mediated regulation of mGlu5R activation.

Int J Biol Macromol

January 2025

Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal. Electronic address:

The adenosine A receptor (AR), a class A GPCR, is a known player in neurological diseases, including Parkinson's disease and Alzheimer's disease, and is also implicated in SARS-CoV-2 infection. Recent studies have revealed its oligomerization with metabotropic glutamate receptor type 5 (mGluR), a class C G protein coupled receptor (GPCR) that exists in the homodimeric form. Simultaneous activation of both receptors synergistically enhances mGluR-mediated effects in the hippocampus.

View Article and Find Full Text PDF

Compelling evidence has demonstrated that rehabilitation through physical exercise, a non-invasive and non-surgical intervention, enhances muscle reinnervation and motor recovery after peripheral nerve injury (PNI) by increasing muscle-derived brain-derived neurotrophic factor (BDNF) expression and triggering TrkB-dependent axonal plasticity. Adenosine has been widely acknowledged to trigger TrkB via A2A receptor (A2AR). Since motor nerve terminals co-express TrkBs and A2ARs and depolarizing conditions increase muscle release of BDNF and adenosine, we examined whether A2ARs activation could recapitulate the functional recovery benefits of intermittent exercise after a nerve crush.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!