Significant outbreaks of prion disease linked to oral exposure of the prion agent have occurred in animal and human populations. These disorders are associated with a conformational change of a normal protein, PrP(C) (C for cellular), to a toxic and infectious form, PrP(Sc) (Sc for scrapie). None of the prionoses currently have an effective treatment. Some forms of prion disease are thought to be spread by oral ingestion of PrP(Sc), such as chronic wasting disease and variant Creutzfeldt-Jakob disease. Attempts to obtain an active immunization in wild-type animals have been hampered by auto-tolerance to PrP and potential toxicity. Previously, we demonstrated that it is possible to overcome tolerance and obtain a specific anti-PrP antibody response by oral inoculation of the PrP protein expressed in an attenuated Salmonella vector. This past study showed that 30% of vaccinated animals were free of disease more than 350 days post-challenge. In the current study we have both optimized the vaccination protocol and divided the vaccinated mice into low and high immune responder groups prior to oral challenge with PrP(Sc) scrapie strain 139A. These methodological refinements led to a significantly improved therapeutic response. 100% of mice with a high mucosal anti-PrP titer immunoglobulin (Ig) A and a high systemic IgG titer, prior to challenge, remained without symptoms of PrP infection at 400 days (log-rank test P<0.0001 versus sham controls). The brains from these surviving clinically asymptomatic mice were free of PrP(Sc) infection by Western blot and histological examination. These promising findings suggest that effective mucosal vaccination is a feasible and useful method for overcoming tolerance to PrP and preventing prion infection via an oral route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474749PMC
http://dx.doi.org/10.1016/j.neuroscience.2008.02.051DOI Listing

Publication Analysis

Top Keywords

prion disease
8
prpsc scrapie
8
oral
5
disease
5
high
4
high titers
4
titers mucosal
4
mucosal systemic
4
systemic anti-prp
4
anti-prp antibodies
4

Similar Publications

Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection.

Immunohorizons

January 2025

Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.

The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.

View Article and Find Full Text PDF

Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.

View Article and Find Full Text PDF

Introduction: Stroke incidence in younger adults is increasing worldwide yet few comprehensive studies exist from a UK population. We investigated the risk factors, mechanisms, functional outcome and stroke recurrence rate in a cohort of young adults with stroke.

Patients And Methods: We included consecutive patients (<55 years) with ischaemic stroke or intracerebral haemorrhage (ICH) admitted to the University College London Hospitals Hyperacute Stroke Unit between 2017 and 2020.

View Article and Find Full Text PDF

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Prion diseases, particularly sporadic cases, pose a challenge due to their complex nature and heterogeneity. The underlying mechanism of the spontaneous conversion from PrPC to PrPSc, the hallmark of prion diseases, remains elusive. To shed light on this process and the involvement of cofactors, we have developed an in vitro system that faithfully mimics spontaneous prion misfolding using minimal components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!