Developmental and physiological effects of estrogen receptor gene disruption in mice.

Trends Endocrinol Metab

Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.

Published: December 2009

Disruption of the estrogen receptor (ER) gene in mice causes infertility in both sexes. Infertility in female ER knockout (ERKO) mice results from altered development of accessory sex structures, disrupted endocrine physiology, and disrupted gametogenesis. Male accessory sex structures appear relatively normal, with infertility stemming from altered sexual behaviors and disrupted gametogenesis. These findings provide significant insights into the biological importance of the ER and suggest further areas for examining the impact of estrogens on reproductive biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1043-2760(97)00007-6DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
8
receptor gene
8
accessory sex
8
sex structures
8
disrupted gametogenesis
8
developmental physiological
4
physiological effects
4
effects estrogen
4
gene disruption
4
disruption mice
4

Similar Publications

Although tamoxifen is commonly utilized as adjuvant therapy for Estrogen Receptor alpha (ERα)-positive breast cancer patients, approximately 30-50% of individuals treated with tamoxifen experience relapse. Therefore, it is essential to investigate additional factors besides ERα that influence the estrogen response. In this study, cross-analysis of databases were performed, and the results revealed a significant association between LINC00626 and ERα signaling as well as increased expression levels of this gene in tamoxifen-resistant cells.

View Article and Find Full Text PDF

Intrapatient heterogeneity of estrogen receptor (ER) expression on 16α-[F]fluoro-17β-estradiol ([F]FES) PET is related to outcome in patients with ER-positive metastatic breast cancer (MBC), but a validated and practical method to support clinical decision-making is lacking. Therefore, the [F]FES PET heterogeneity score (i.e.

View Article and Find Full Text PDF

Signaling crosstalk of Galectin-3, β-catenin, and estrogen receptor in androgen-independent prostate cancer DU-145 cells.

J Steroid Biochem Mol Biol

January 2025

Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, 04039-032, Brazil. Electronic address:

The aims of this study were to investigate the localization of non-phosphorylated β‑catenin and Galectin-3 (GAL-3), the regulation of the expression of both proteins by activation of estrogen receptors (ERs) and their role in tumorigenic characteristics of androgen-independent prostate cancer DU-145 cells. DU-145 cells were cultured in the absence (control), and presence of 17β-estradiol (E2). Cells were also untreated or pre-treated with the inhibitor of GAL‑3, VA03, or with a compound that disrupts the complex β-catenin-TCF/LEF transcription factor, PKF 118-310.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with cardiometabolic risk. Although studies have shown that estradiol positively contributes to energy metabolism via estrogen receptor alpha (ERα), its role specifically in the liver is not defined. Therefore, this study aimed to evaluate the effects of ERα overexpression, specifically in the liver in mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Background: Recent studies have shown that receptor status of breast cancer change between primary tumor and recurrence, which may influence treatment strategy and prognosis, but there are few reports on receptor discordance between primary tumors and local recurrence (LR) after nipple-sparing mastectomy (NSM).

Patients And Methods: We collected 74 patients who had LR after NSM for newly diagnosed stages 0 to 3 breast cancer between 2008 and 2016 at 14 institutions. We classified into 4 subtypes based on hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!